Future Direction in Systems and Control Gifu, Japan (Sept. 9, 2012)

Towards Social System Synthesis Harmonized with Nature - Control Perspective -

Shinji Hara (U. Tokyo)

Our Recognition

After the Earthquake on March 11 and Fukushima

These events show that the current science and technology need careful reconsideration.

However, we must believe that that we can reach a new better world through new innovations.

Paradigm Shift

Establish Sci. and Tech. led by "Control" Make "Control" as one of the most essential areas in sci. & tech. for the future

音島第一原子力発電所 3号稿(3/16 PM摄影

2

Future Direction in Control

Changes in Contribution of Control

- Development and realization of products (artifacts) → Design of systems and environments to solve social problems
- "Objects もの": Development of system components →
 "Functions コト": "Harmonization" of total functions as systems
- Short-term values → Long-term prospects: "Sustainability"

Objects to be Controlled

In closed space (Artificial systems) →
 In open space (Complex systems of nature, society, humans)

4

 Homogenous system → Heterogeneous system (Varieties, Hierarchies, Multi-Resolutions)

Features of Target Systems

- Heterogeneous interactive systems consisting of elements and subsystems that interact with each other.
- Systems in open environments that function under incomplete information
- Systems with diverse values that may also change depending on circumstances

Issues and Problems

- Tradeoffs between optimality and robustness
- Conflicts among local/global optima
- Consensus forming in society

Harmony with Nature and Social System

Heterogeneous Networked Dynamical Systems

Integrated Control NW (Measurement, Prediction & Control) Economic NW

OUTLINE

1. Future in Control

- 2. Current Control Activities in Japan for New Directions
- 3. Glocal Control
- 4. Smart Water City
- 5. Concluding Remarks

OUTLINE

1. Future in Control

2. Current Control Activities in Japan for New Directions

3. Glocal Control

- 4. Smart Water City
- 5. Concluding Remarks

Current Control Activities in Japan for New Directions

- Transdisciplinary Integration
 initiated by SICE
- SICE City
- Smart Water City
 proposed by SICE
- Mobiligence

Emergence of adaptive motor function through interaction among the body, brain and environment

Glocal Control: A New Paradigm in Control

SICE : Society of Instrument and Control Engineers

Transdisciplinary Integration - Integration of multi-disciplinary sciences -

Promotion of new science through integration of multidisciplinary sciences towards solving social problems

Perspective through wide field of science and technologies 10

Realization of new residential areas for health, safety/security, and life-long support through measurement, control and system integration

Smart Water City

Glocal Control

OUTLINE

- **1. Future in Control**
- 2. Current Control Activities in Japan for New Directions
- 3. Glocal Control
- 4. Smart Water City
- 5. Concluding Remarks

LTI System with Generalized Frequency Variable

A unified representation for multi-agent dynamical systems

Gene Reg. Networks

Group Robot

Stability Tests for LTISwGFV

Graphical	Algebraic	Numeric (LMI)
Nyquist – type	Hurwitz – type	Lyapunov – type
Polyak & Tsypkin (1996) Fax & Murray (2004) Hara et al. (2007)	Tanaka, Hara, Iwasaki (ASCC2009)	Tanaka, Hara, Iwasaki (ASCC2009)
$h(s)$ and $\sigma(A)$	$h(s)$ and $\sigma(A)$	h(s) and A

Hurwitz test for complex coefficients Generalized Lyapunov Inequality ¹⁷

Weak Inter-layer Interaction

Rapid Hierarchical Decentralized Consensus **Cooperative Control** 0.9 ⊿: Rank 1 0.8 0.7 0.6 x 0.5 osition - A 0.4 subsystem agent 0.3 L0.2 0.1 ᅇ 2 3 4 5 Time w_l \mathbf{w}_{k} 0.9 0.8 0.7 u 0.6 Bosition Position 0.5 L_{k} L_l 0.3 Aggregation 0.2 **Distribution** 0.1 0^L 2 3 4 5

6

18

Time

New Framework for System Theory

Architecture of Glocal Control System

Global Measurement (LR) 20

Smart Energy NW and Energy Saving

Smart Energy Network Electric power network + Gas energy network

Multi-resolved Hierarchical Modeling

- \rightarrow Multi-resolved Prediction
- \rightarrow Hierarchical Decentralized Control

Hierarchical Air Conditioning

Hierarchical Air Conditioning System <u>Area</u>: Group of buildings <u>Building</u>: Set of floors <u>Floor</u>: Set of rooms

Energy saving (40%) Heat island problem

Multi-resolved Hierarchical Modeling

- → Multi-resolved Prediction
- → Hierarchical Decentralized Control

Evacuation Guidance for Tsunami

How to set up GPS wave sensors to predict the time and height of "tsunami" properly for effective evacuation guidance ? *Optimal time-, space-, level- resolutions ?*

OUTLINE

- **1. Future in Control**
- 2. Current Control Activities in Japan for New Directions
- **3. Glocal Control**
- 4. Smart Water City
- **5. Concluding Remarks**

Design of New Water Space

Design of New Water Space: "Smart Water City"

Diversity & Multiple Properties of Water

- Water as medium
- Capability of transportation and storing heat and energy
- Three different phases: solid, liquid, and gas

- Dischargeable Everywhere and Circulating Globally
- Unlimitedly Recyclable

Possibility of 3-di.m. Water Usage

Environment loading optimum control system

Environment

control valve

loading

Heat of indoor air would be radiated using the water circulating inside the house(building) MB R Local sanitary sewer disposing system (Membrane Bioreactor) 28

Smart Water City

Concept of "Smart Creek"

- Creek anywhere, in your town
- Taking or sprinkling water anytime anywhere by the decentralized circulation mechanism
- Without manhole /sewage pipe

Image of "Smart Creek"

Decentralized Wastewater Treatment & Circulation System

Networked Control System

Urban Heat Island Problem

Glocal

Control

Local Actions of Measurement & Control

Scale of buildings and roads

Realization of Global Desired Environment of a Whole City

Scale of residential and business areas

Scale of districts/towns

OUTLINE

- **1. Future in Control**
- 2. Current Control Activities in Japan for New Directions
- **3. Glocal Control**
- 4. Smart Water City
- 5. Concluding Remarks

Harmony with Nature and Social System

Heterogeneous Networked Dynamical Systems

Integrated Control NW (Measurement, Prediction & Control) Economic NW

Wide View of "Control"

Thank you very much !

