The 8th Asian Control Conference Kaohsiung, Taiwan May 16, 2011

Glocal Control A Realization of Global Functions by Local Measurement and Control

Shinji HARA The University of Tokyo, Japan

Why "Glocal Control" ?

Recently, systems to be treated in various fields of engineering including control have became large and complex, and more high level control such as adaptation against changes of environments for open systems is required. Typical example includes meteorological phenomena and bio systems, where our available actions of measurement and control are restricted locally although our main purpose is to achieve the desired global behaviors.

This motivates us to develop a **new research area** so called "Glocal Control," which means that the desired global behaviors is achieved by only local actions.

Advanced Science & Technology Driven by Control

Idea of "Glocal Control"?

Urban Heat Island Problem

Hierarchical Bio-Network Systems

Framework for Glocal Control

Three Key Issues

1 Paradigm Shift in Control

- Realization of High Quality Products
- → Solving Social Problems

2 New Unified Framework

LTI System with Generalized Frequency Variable
→ Hierarchical Dynamical System with Multiple Resolutions

③ New Control Theory for Systematic Ways of Analysis and Synthesis

Fundamental Results & New Notions/Principles

→ Practical Applications

Three Key Issues

Idea of Paradigm Shift in Control Glocal Control **Realization of High Quality Products** → Solving Social Problems Toward Glocal **(2)** New Unified Framework **Control** LTI System with Generalized Frequency Variable → Hierarchical Dynamical System with Multiple Resolutions **(3)** New Control Theory for Systematic Ways

of Analysis and Synthesis *Fundamental Results* & New Notions/Principles → Practical Applications

OUTLINE

1. Glocal Control

- 2. Unified Framework with Stability Conditions
- 3. Cooperative Stabilization
- 4. Robust Stability Analysis
- 5. Hierarchical Consensus
- 6. Conclusion

OUTLINE

1. Glocal Control

2. Unified Framework with Stability Conditions

3. Cooperative Stabilization

- 4. Robust Stability Analysis
- 5. Hierarchical Consensus

6. Conclusion

(Hara et al.: CDC2007, Tanaka et al.: ASCC2009)

LTI System with Generalized Frequency Variable

A unified representation for multi-agent dynamical systems

Group Robot

Gene Reg. Networks

An Example : Cyclic Pursuit

 $\delta \theta_i(t) \rightarrow 2\pi/9$

13

Stability Region for LTISwGFV

(Hara et al. IEEE CDC, 2007)

♦ <u>Define</u>: Domains $\Omega_+ := \phi(\mathbb{C}_+), \quad \Omega_+^c := \mathbb{C} \setminus \Omega_+$

How to characterize the region ? How to check the condition ?

Stability Tests for LTISwGFV

Graphical	Algebraic	Numeric (LMI)
Nyquist – type	Hurwitz – type	Lyapunov – type
Polyak & Tsypkin (1996) Fax & Murray (2004) Hara et al. (2007)	Tanaka, Hara, Iwasaki (ASCC2009)	Tanaka, Hara, Iwasaki (ASCC2009)
$h(s)$ and $\sigma(A)$	$h(s)$ and $\sigma(A)$	h(s) and A

Hurwitz test for complex coefficients Generalized Lyapunov Inequality¹⁵

Stability Conditions

(Tanaka et al., ASCC, 2009)

Given
$$h(s) = n(s)/d(s)$$
, A $\mathcal{H}_{A}(s)$ is stable
 $\sigma(A) \subset \Lambda := \{ \lambda \in \mathbb{C} \mid d(s) - \lambda n(s) \text{ is Hurwitz stable } \}$
Hermina
Algebraic condition
 $\sigma(A) \subset \bigcap_{k=1}^{r} \Sigma_{k}$
 $\Sigma_{k} := \{ \lambda \in \mathbb{C} \mid l_{k}(\lambda)^{*} \Phi_{k} l_{k}(\lambda) > 0 \}$
 $(k = 1, 2, ..., \nu)$
Generalized Lyapunov inequality
 $X_{k} = X_{k}^{T} > 0 \text{ s.t. } L_{k}(A)^{T}(\Phi_{k} \otimes X_{k})L_{k}(A) > 0$
for each $k = 1, 2, ..., \nu$
 $h(k) = 1, ...$

Numerical Example: 2nd order (1/2)

Given
$$h(s) = \frac{2s+1}{s^2+s+1}, A \in \mathbb{R}^{n \times n}$$

 $\sigma(A) \subset \Lambda := \{ \ \lambda \in \mathbb{C} \ | \ (s^2 + s + 1) - \lambda(2s + 1) \text{ is Hurwitz stable } \}$

Extended Routh-Hurwitz Criterion

Numerical Example : 2nd order (2/2)

Given
$$h(s) = \frac{2s+1}{s^2+s+1}, A \in \mathbb{R}^{n \times n}$$

$$\sigma(A) \subset \Sigma := \left\{ \begin{array}{l} \lambda \in \mathbb{C} \mid \Delta_1 > 0 \text{ and } \Delta_2 > 0 \end{array} \right\}$$
$$\Delta_1 = \begin{bmatrix} 1 \\ \lambda \end{bmatrix}^* \begin{bmatrix} 1 & -1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ \lambda \end{bmatrix} > 0$$
$$\Delta_2 = \frac{1}{4} \begin{bmatrix} 1 \\ \lambda \\ \lambda^2 \end{bmatrix}^* \begin{bmatrix} 4 & -10 & 7 \\ -10 & 18 & -8 \\ 7 & -8 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ \lambda \\ \lambda^2 \end{bmatrix} > 0$$

Generalized Lyapunov inequality

$$X_{1} = X_{1}^{T} > 0 \quad \text{s.t.} \quad \begin{bmatrix} I \\ A \end{bmatrix}^{T} \left(\begin{bmatrix} 1 & -1 \\ -1 & 0 \end{bmatrix} \otimes X_{1} \right) \begin{bmatrix} I \\ A \end{bmatrix} > 0$$
$$X_{2} = X_{2}^{T} > 0 \quad \text{s.t.} \quad \begin{bmatrix} I \\ A \\ A^{2} \end{bmatrix}^{T} \left(\begin{bmatrix} 4 & -10 & 7 \\ -10 & 18 & -8 \\ 7 & -8 & 0 \end{bmatrix} \otimes X_{2} \right) \begin{bmatrix} I \\ A \\ A^{2} \end{bmatrix} > 0$$

Algorithm

Numerical Example: 4th order

$$h(s) = \frac{100(s+2)(\frac{19}{10}s^2 - \frac{1}{500000}s + \frac{21}{10})}{(s-1)^2(s+1)(s+100)}$$

Unstable & NMP

An Application : Biological rhythms

Motivation

Biological rhythms

- 24h-cycle, heart beat, sleep cycle etc.
- caused by periodic oscillations of protein concentrations in <u>Gene Regulatory Networks</u>

Medical and engineering applications

- Artificially engineered biological oscillators (e.g.) Repressilator [Elowitz & Leibler, *Nature*, 2000]

What are analytic conditions for convergence and the existence of oscillations ?

Condition for Existence of Oscillations

The cyclic GRN has periodic oscillations if at least one of eigenvalue of K lies inside Ω_+ where $\Omega_{+} := \left\{ \lambda \in \mathbb{C} \mid \exists s \in \mathbb{C}_{+} \text{ s.t. } \lambda = \phi(s) \right\}$

 $\phi(s) := (T_a s + 1)(T_b s + 1)$

Analytic Criteria

• Assumptions: All interactions are repressive

Theorem [Hori et al., CDC2009]

The cyclic GRN has periodic oscillations, if an analytic

condition in terms of (N, ν, R, Q) is satisfied.

 $R := \frac{\sqrt{c\beta}}{\sqrt{ab}}$ Raio of production and degradation rates $Q := \frac{\sqrt{T_a T_b}}{(T_a + T_b)/2}$ Gap between two tme constants

$$T\simeq rac{2\pi Q an(rac{\pi}{N})}{\sqrt{1+Q^2 an^2(rac{\pi}{N})}-1}\sqrt{T_aT_b}$$

(Hori, Hara: CDC2010)

Message : Framework and Stability

1 LTI system with generalized freq. variable a proper class of homogeneous multi-agent dynamical systems

② Three types of stability tests, namely graphical, algebraic, and numeric (LMI) powerful tools for analysis

③ Parametric stability analysis for gene regulatory networks new biological insight

OUTLINE

1. Glocal Control

2. Unified Framework with Stability Conditions

3. Cooperative Stabilization

4. Robust Stability Analysis

5. Hierarchical Consensus

6. Conclusion

(Hara et al.: CDC-CCC2009)

An Application: Inverted Pendulum

Cooperatively stabilizable ?

<u>**Remarks</u>** : No physical interactions memory-less feedback</u>


```
\Omega^c_+ is non-empty.
```

Solely stabilizable:

$$\Omega^c_+$$
 interacts the real axis.

N : odd : Coop. Stab. = Solely Stab.

N: even : Coop Stab. (N=2) \rightarrow any N=2m

Property 2

$$\mathcal{H}_{A}(s) := \left(\frac{d(s)}{n(s)}I - A\right)^{-1} \text{ is stable.} ; h(s) = \frac{n(s)}{d(s)}$$

$$\widehat{1} \quad p(\lambda, s) := d(s) - \lambda n(s)$$
(ii) $\sigma(A) \subset \Lambda := \left\{ \lambda \in \mathbb{C} \mid p(\lambda, s) \\ \text{ is Hurwitz stable.} \right\}$
Solely Stabilizable : \bigstar
Stabilizable by a real gain output feedback
Cooperatively Stablizable : \bigstar
Stabilizable by a complex gain output feedback
29

Theorem: Coop. Stabliz. = Soley Stabiliz.

$$h_2(s) = \frac{cs+d}{s^2+as+b}$$

Higher order systems:

$$\begin{aligned} \mathcal{H}_{0}(s) &\triangleq \{ h(s) = \frac{k}{d(s)} \mid k \neq 0 \} \\ \mathcal{H}_{1}(s) &\triangleq \{ h(s) = \frac{ks}{d(s)} \mid k \neq 0, \ d(0) \neq 0 \} \\ \mathcal{H}_{2}(s) &\triangleq \{ h(s) = \frac{k(s^{2} - b^{2})}{d(s)} \mid k \neq 0, \ d(\pm b) \neq 0 \} \\ d(s) &= s^{n} + a_{n-1}s^{n-1} + \dots + a_{1}s + a_{0} \end{aligned}$$

Example: Inverted Pendulum

$$P_{\theta}(s) = rac{-m\ell s}{D(s)} \in \mathcal{H}_1(s)$$

$$D(s) = a_3 s^3 + a_2 s^2 + a_1 s + a_0 ,$$

$$a_{3} := \frac{1}{3}(4M+m)m\ell^{2},$$

$$a_{2} := (M+m)\mu_{p} + \frac{4}{3}\mu_{t}m\ell^{2},$$

$$a_{1} := -(M+m)mg\ell + \mu_{p}\mu_{t},$$

$$a_{0} := -\mu_{t}mg\ell.$$

An example : Cope. Stab. \pm Soley Stab.

Inverted Pendulum : PD control (1/2)

$$h(s) = \frac{(Ts+1)(\frac{19}{10}s^2 - \frac{1}{500}s + \frac{21}{10})}{s(s-2)(s+1)(s+5)}$$

We can prove by a symbolic computation (QE) that the system can not be stabilized alone no matter how we choose T>0.

Inverted Pendulum : PD control (2/2)

$$T = 1/2: \quad h(s) = \frac{(\frac{1}{2}s+1)(\frac{19}{10}s^2 - \frac{1}{500}s + \frac{21}{10})}{s(s-2)(s+1)(s+5)}$$

Message : Cooperative Stabilization

1 Cooperation realizes complex gain feedback virtually.

(2) Different roles of two agents are required for getting an advantage for stabilization.

OUTLINE

1. Glocal Control

2. Unified Framework with Stability Conditions

3. Cooperative Stabilization

4. Robust Stability Analysis

5. Hierarchical Consensus

6. Conclusion

(Hara et al.: CDC2010)

Robust Stability for LTI Systems with GFV

Fundamental Questions in Control

From <u>Stability</u> to

- <u>Robust Stability</u> ?
 * homogeneous -> heterogeneous
 * physical inter-agent interactions
- <u>Control Performance</u> ?

H∞-norm Computation ?

Robust Stability Condition for Heterogeneous Perturbations

(Hara et al.: CDC2010)

<u>Assumption</u>

 $\exists D$: diagonal s.t. DAD^{-1} is normal

<u>Theorem</u>: The following conditions are equivalent. (i) The system is robustly stable for $\Delta_{d\gamma}$. (ii) $\left\|\frac{\lambda h}{1-\lambda h}\right\|_{\infty} < \gamma, \quad \forall \ \lambda \in \sigma(A)$ (iii) $\left| \frac{\lambda}{\phi - \lambda} \right| < \gamma, \ \forall \ \lambda \in \sigma(A),$ $\forall \ \phi \in \Phi := \{1/h(j\omega) | \ \omega \in \mathbb{R} \}.$

Linearized Gene Network Model

Robust Stability Test

The smaller values of N, Q, and/or R \rightarrow more robust for maintaining stability

(Osawa et. al., ASCC2011) tomorrow morning

Stability for Dissipative Agents

<u>Agent Dynamics</u> — SISO (Q, S, R)-dissipative

$$\dot{x}_i = f_i(x_i) + g_i(x_i)u_i$$
$$y_i = h_i(x_i)$$

$$Q = \text{diag}\{Q_i\} \le 0,$$

$$S = \text{diag}\{S_i\},$$

$$R = \text{diag}\{R_i\} > 0.$$

Theorem (LMI)

If \exists a diagonal matrix D > 0 such that

$$A^T \mathbf{D} R A + \mathbf{D} S A + A^T S^T \mathbf{D} + \mathbf{D} Q < \mathbf{0}$$

holds, then the network of N interconnected (Q_i, S_i, R_i) -dissipative agents is asymptotically stable.

Message : Robust Stability

(1) Methods of robust stability analysis for standard systems such as *D*-scaling work well for stability analysis for heterogeneous multiagent dynamical systems.

② Although the results are not complete, there are many potential practical application fields to which we can apply them.

OUTLINE

1. Glocal Control

2. Unified Framework with Stability Conditions

- 3. Cooperative Stabilization
- 4. Robust Stability Analysis
- 5. Hierarchical Consensus

6. Conclusion

(Shimizu, Hara: SICE2008, Hara et al.: ACC2009)

Hierarchical Consensus Problem

$$\dot{x}(t) = Ax(t)$$
 $\exists \xi, \lim_{t \to \infty} x(t) = \xi \cdot 1$

total agents : $n1 \times n2 \times n3$

Hierarchical Structure

Eigenvalue Distributions

Time Responses (n1=25, n2=4)

Message : Hierarchical Consensus

1 Proper ways of aggregation and distribution are important to achieve rapid consensus.

(2) Low rankness of interlayer connection captures them properly.

Toward "Glocal Control"

A Unified Framework for

Decentralized Cooperative Control

of Large Scale Networked Dynamical Systems

Key Idea : Dynamical System with Generalized Frequency Variable

Stability & Robust Stability Analysis Cooperative Stabilization

<u>Extensions</u> :

- Hierarchical case
- Non-linear case
- Control Performances, Synthesis ?

New Framework for System Theory

Image of Glocal Control System

Smart Energy NW and Energy Saving

Smart Energy Network

Electric power network + Gas energy network

http://tinycomb.com/wp-content/ uploads/2009/05/smart-grid.jpg

Hierarchical Air Conditioning System Group of buildings Set of floors Set of rooms

Evacuation Guidance for Tsunami

How to set up GPS wave sensors to predict the time and height of "tsunami" properly for effective evacuation guidance ? *Optimal time-, space-, level- resolution* ?

Acknowledgements

(1) Glocal Control

Jun-ichi Imura (Tokyo Tech.) Koji Tsumura (U. Tokyo) Koichiro Deguchi (Tohoku U.)

(2) LTI Systems with Generalized Freq. Vars.

Tetsuya Iwasaki (UCLA) Hideaki Tanaka (U. Tokyo) Masaaki Kanno (Niigata U.)

3 Gene Regulatory Networks

Yutaka Hori (U. Tokyo) Tae-Hyoung Kim (Chung-Ang U.)

Please join us to develop "Glocal Control Theory" and to solve social problems through "Glocal Control"

