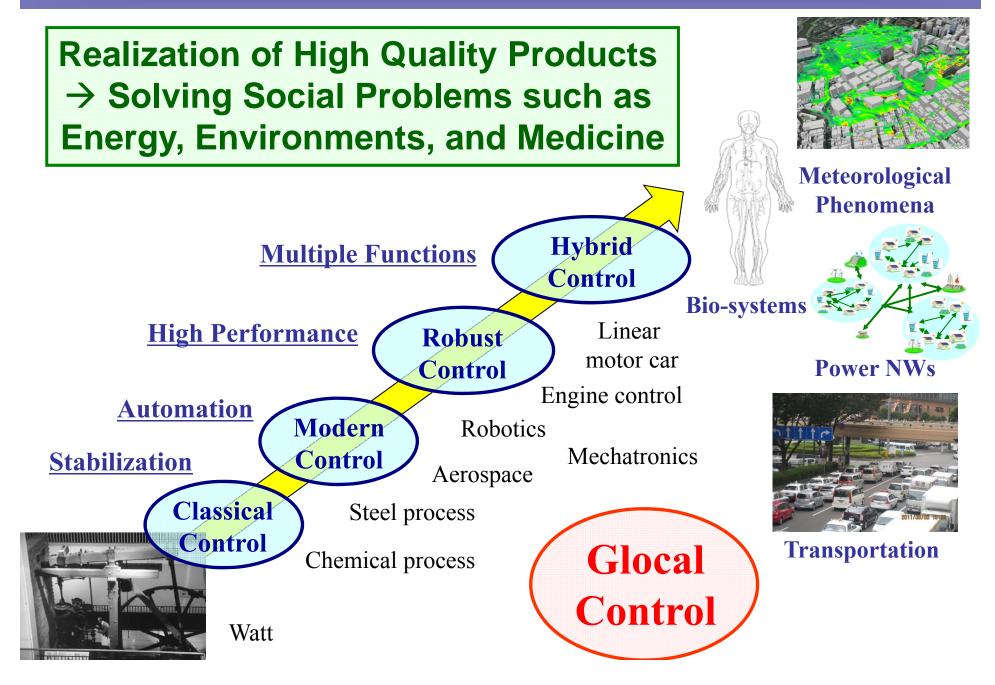
IFAC ROCOND2012, Aalborg, Denmark June 21, 2012

Robustness in Networked Dynamical Systems

Shinji HARA (The University of Tokyo, Japan)

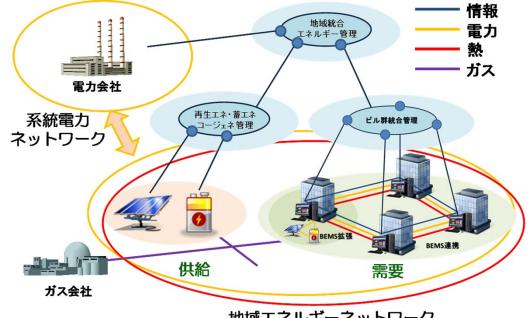
Future Direction in Control



Smart Energy NW and Energy Saving

Smart Energy Network

Electric power network + Gas energy network



地域エネルギーネットワーク

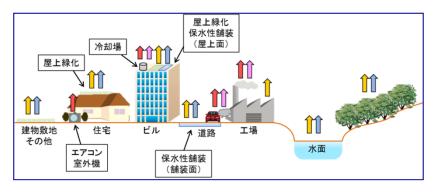
Hierarchical Air Conditioning System Area: Group of buildings **Building: Set of floors** Floor: Set of rooms

Urban Heat Island Problem

Glocal

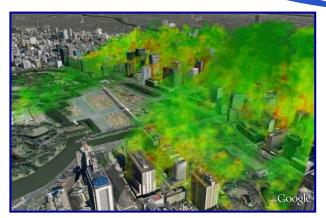
Control

Local Actions of Measurement & Control



Scale of buildings and roads

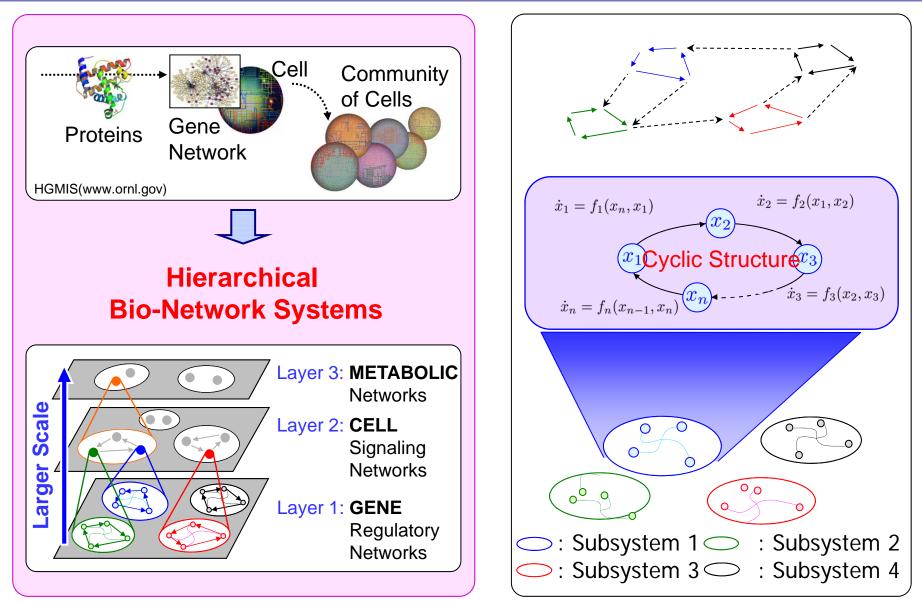
Realization of Global Desired Environment of a Whole City

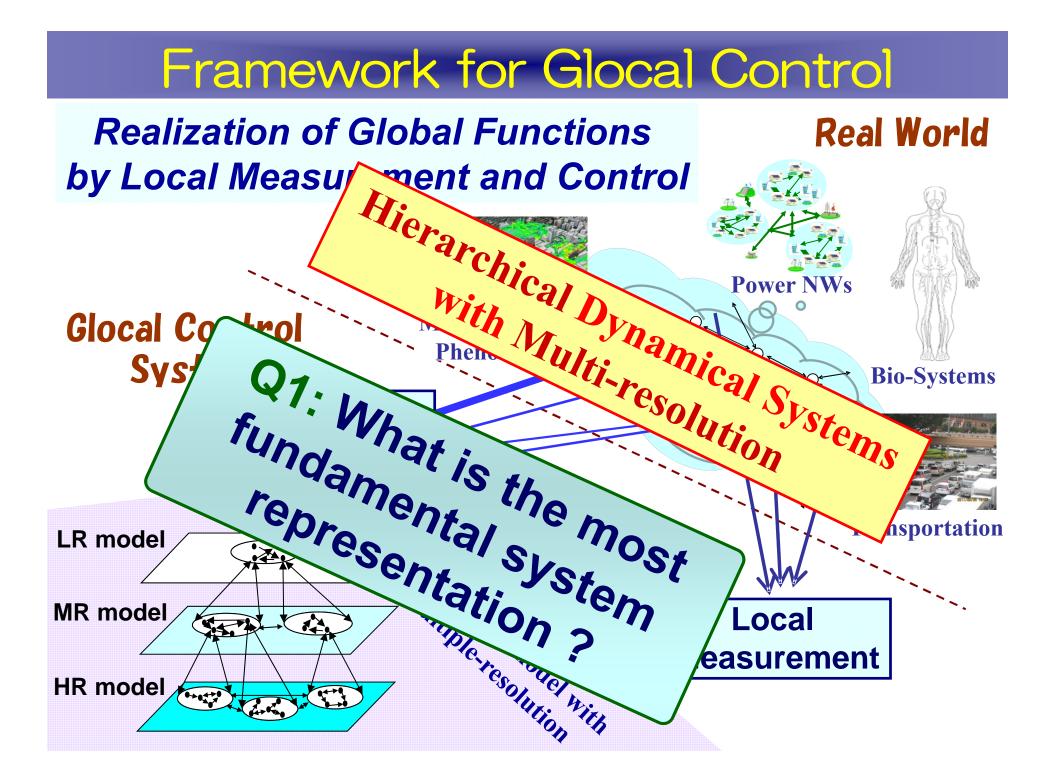


Scale of residential and business areas

Scale of districts/towns

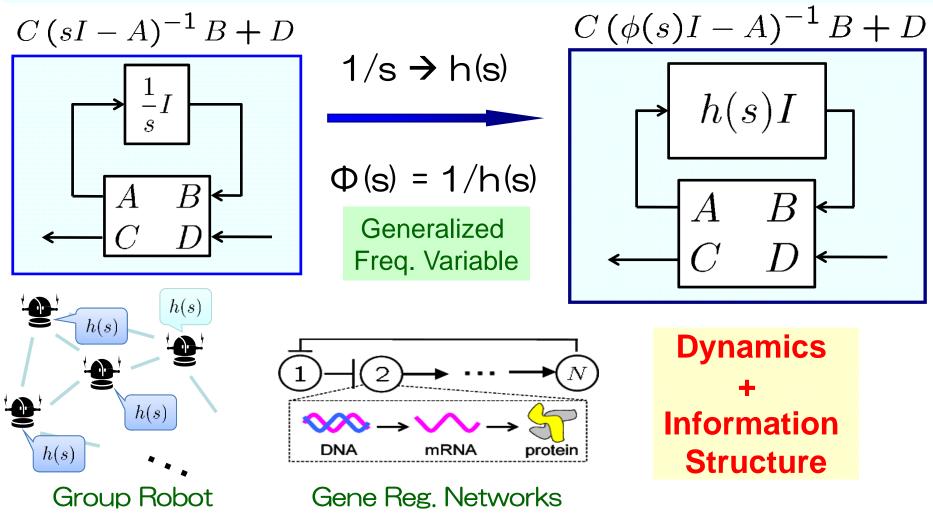
Hierarchical Bio-Network Systems





LTI System with Generalized Frequency Variable

A unified representation for homogeneous multi-agent dynamical systems



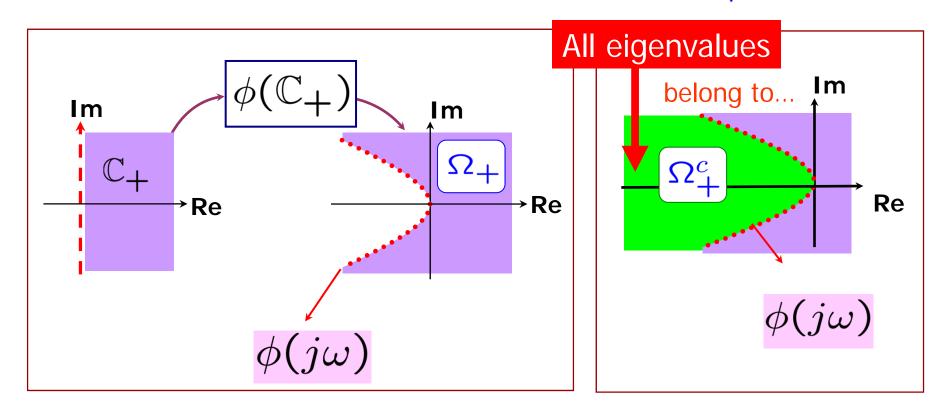
OUTLINE

- 1. Stability Analysis: Review
- 2. D-Stability Analysis
- 3. Robust Stability Analysis
- 4. Application to Gene Regulatory Networks
- 5. Nonlinear Stability Analysis
- 6. Concluding Remarks

Stability Region for LTISwGFV

(Hara et al. IEEE CDC, 2007)

♦ <u>Define</u>: Domains $\Omega_+ := \phi(\mathbb{C}_+), \quad \Omega_+^c := \mathbb{C} \setminus \Omega_+$



Q2A: How to characterize the region ? **Q2B:** How to check the condition ?

Stability Tests for LTISwGFV

Graphical	Algebraic	Numeric (LMI)
Nyquist – type	Hurwitz – type	Lyapunov – type
Fax & Murray (2004) Hara et al. (2007)	Tanaka, Hara, Iwasaki (2009)	Tanaka, Hara, Iwasaki (2009)
$h(s)$ and $\sigma(A)$	$h(s)$ and $\sigma(A)$	h(s) and A

Hurwitz test for complex coefficients

Characteristic

Polynomial

Generalized Lyapunov Ineq.

 $p(\lambda, s) := d(s) - \lambda n(s)$ $\lambda \in \sigma(A)$ (complex)

Stability Conditions

(Tanaka et al., ASCC, 2009) Given h(s) = n(s)/d(s), $A \mid \mathcal{H}_A(s)$ is stable $\sigma(A) \subset \Lambda := \{ \lambda \in \mathbb{C} \mid d(s) - \lambda n(s) \text{ is Hurwitz stable } \}$ Key lemma Extended **Algebraic condition Routh-Hurwitz** $\sigma(A) \subset \bigcap \Sigma_k$ Criterion [Frank, 1946] k=1 $\Sigma_k := \{ \lambda \in \mathbb{C} \mid l_k(\lambda)^* \Phi_k l_k(\lambda) > 0 \}$ $(k = 1, 2, \dots, \nu)$ Generalized Lyapunov inequality $l_{\ell}($ LMI feasibility problem 0

$$X_k = X_k^T > 0 \text{ s.t. } L_k(A)^T (\Phi_k \otimes X_k) L_k(A) >$$
for each $k = 1, 2, \dots, \nu$

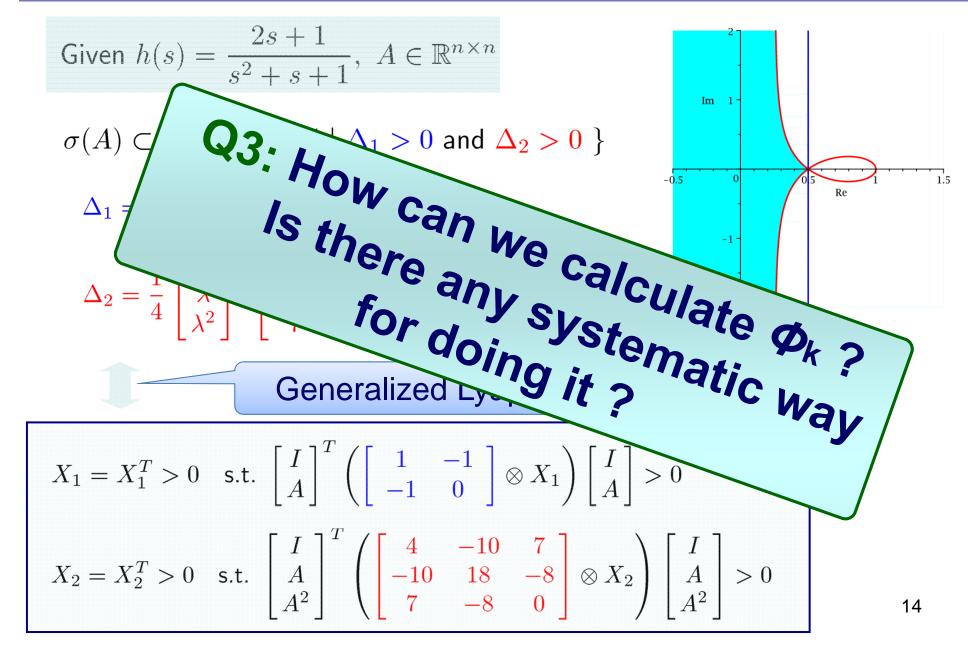
$$(\lambda) := \begin{bmatrix} 1\\\lambda\\ \vdots\\\lambda^{\ell} \end{bmatrix}, \ L_{\ell}(A) := \begin{bmatrix} I\\A\\ \vdots\\A^{\ell} \end{bmatrix}$$

Numerical Example: 2nd order (1/2)

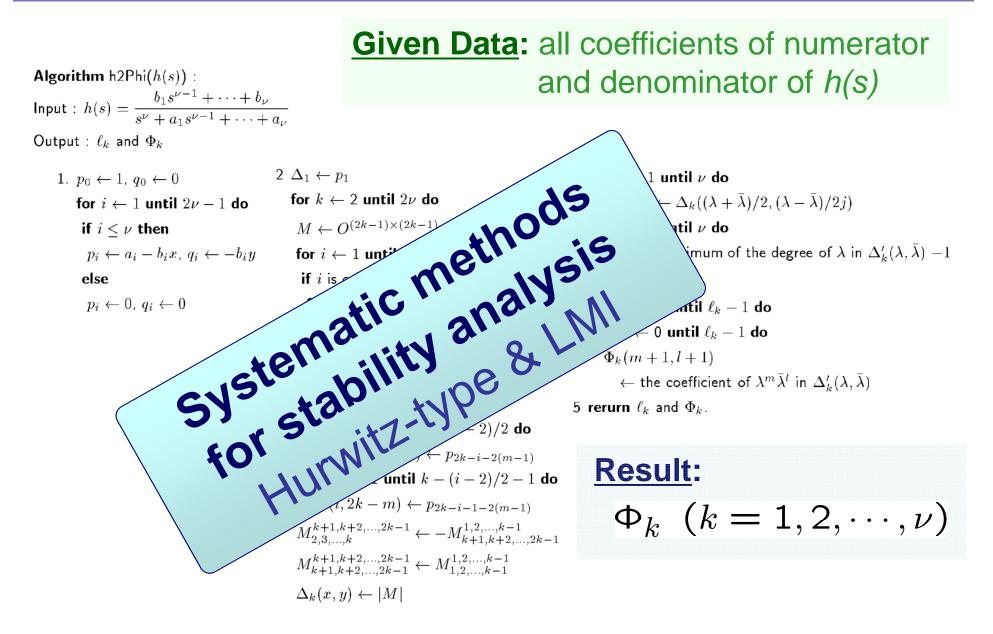
Given
$$h(s) = \frac{2s+1}{s^2+s+1}$$
, $A \in \mathbb{R}^{n \times n}$
 $\sigma(A) \subset \Lambda := \{ \lambda \in \mathbb{C} \mid (s^2+s+1) - \lambda(2s+1) \text{ is Hurwitz stable } \}$
Extended Routh-Hurwitz Criterion (Frank, 1948)
 $\sigma(A) \subset \Sigma := \{ \lambda \in \mathbb{C} \mid \Delta_1 > 0 \text{ and } \Delta_2 > 0 \}$
 $\Delta_1 = \begin{bmatrix} 1 \\ \lambda \end{bmatrix}^* \begin{bmatrix} 1 & -1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ \lambda \end{bmatrix} > 0$
 $\Delta_2 = \frac{1}{4} \begin{bmatrix} 1 \\ \lambda_2 \end{bmatrix}^* \begin{bmatrix} 4 & -10 & 7 \\ -10 & 18 & -8 \\ 7 & -8 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ \lambda_2 \end{bmatrix} > 0$
 $a_1 = \begin{bmatrix} 1 \\ \lambda_2 \end{bmatrix}^* \begin{bmatrix} 4 & -10 & 7 \\ -10 & 18 & -8 \\ 7 & -8 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ \lambda_2 \end{bmatrix} > 0$
 $a_2 = \frac{1}{4} \begin{bmatrix} 1 \\ \lambda_2 \end{bmatrix}^* \begin{bmatrix} 4 & -10 & 7 \\ -10 & 18 & -8 \\ 7 & -8 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ \lambda_2 \end{bmatrix} > 0$
 $a_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\$

ł

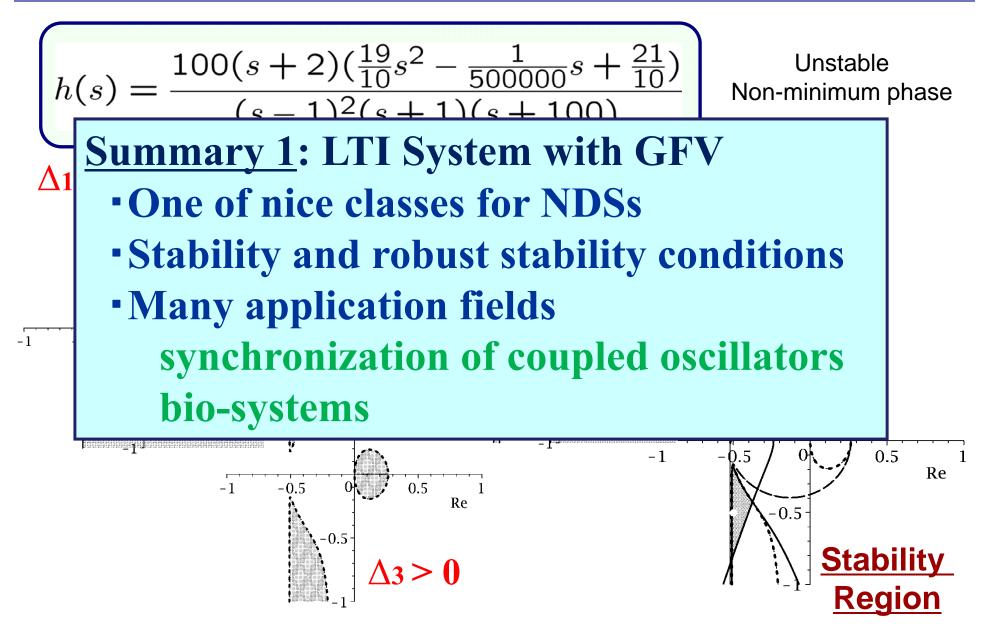
Numerical Example: 2nd order (2/2)



Algorithm



Numerical Example: 4th order



Further Fundamental Questions

Robustness Issues in Networked Dynamical Systems (LTI systems with GFV) ?

Stability Margins

Q5: Robust Stability Analysis ?

Homogeneous \rightarrow Heterogeneous

OUTLINE

1. Stability Analysis: Review

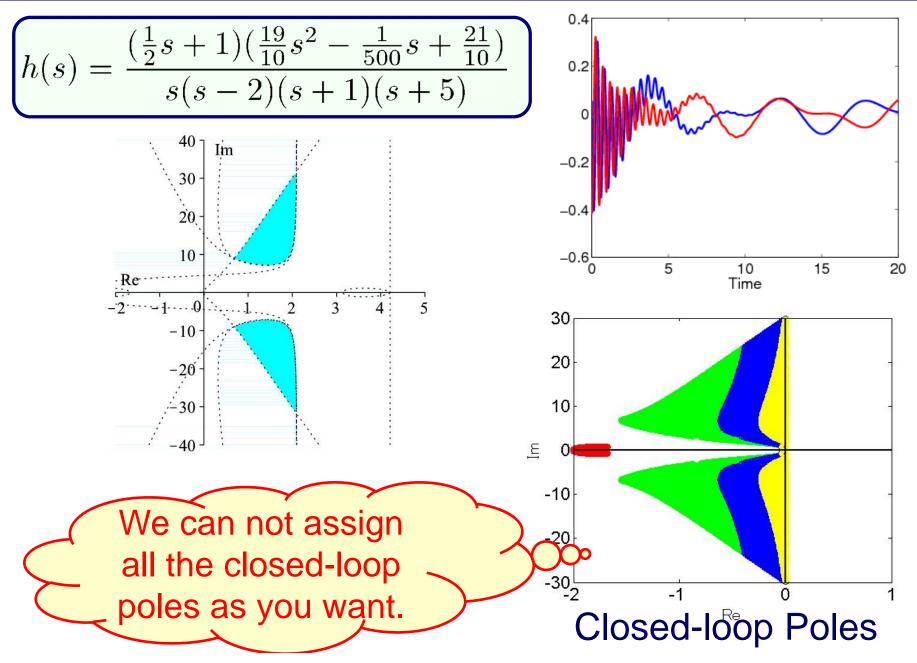
- 2. D-Stability Analysis
- 3. Robust Stability Analysis
- 4. Application to Gene Regulatory

Networks

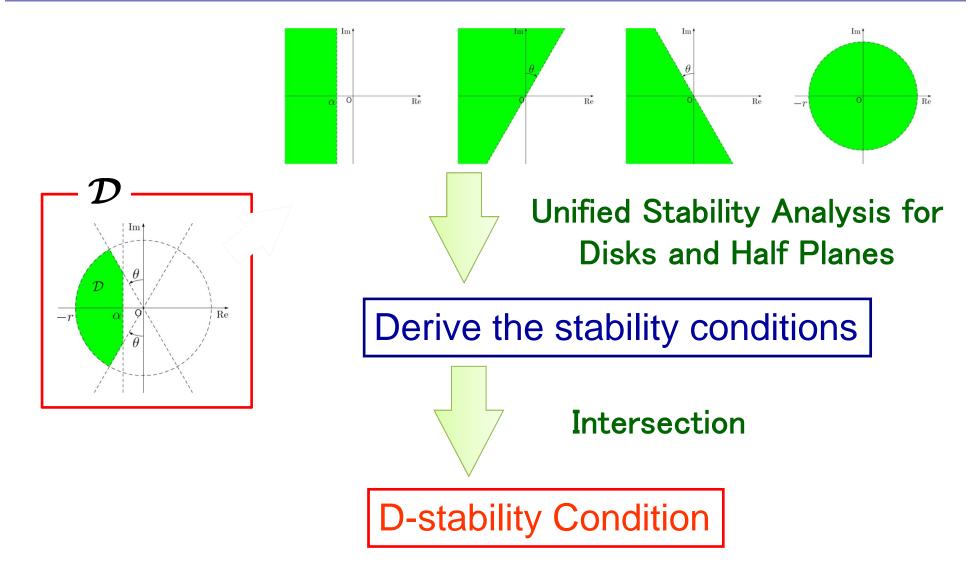
5. Nonlinear Stability Analysis

6. Concluding Remarks

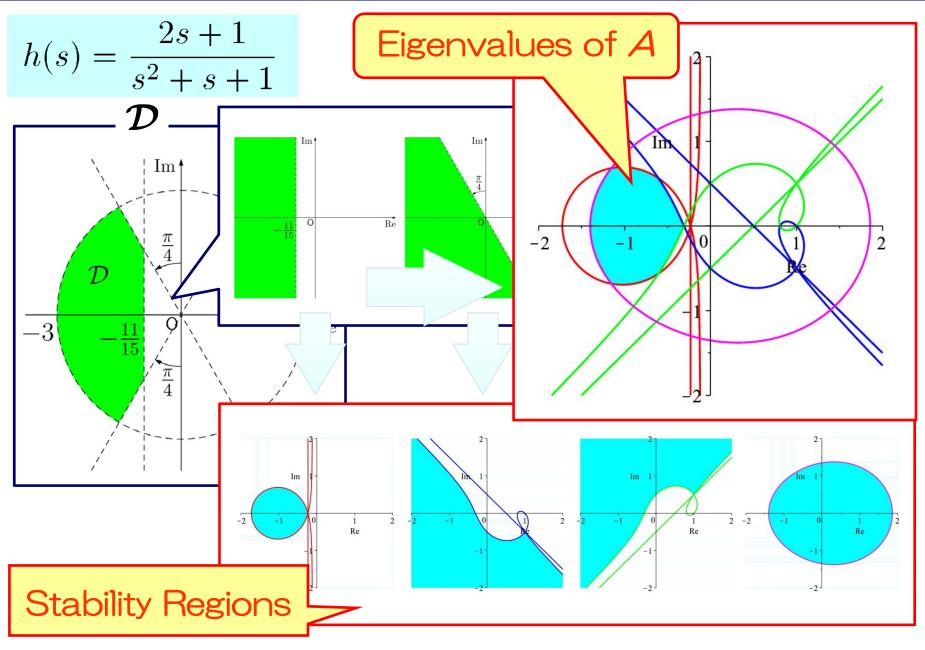
Why D-Stability Analysis ?



Unified Approach to D-Stability Analysis



A Numerical Example



Motivating Example 3° 2° 30 20 $h(s) = \frac{\left(\frac{1}{2}s+1\right)\left(\frac{19}{10}s^2 - \frac{1}{500}s + \frac{21}{10}\right)}{s(s-2)(s+1)(s+5)}$ 10 Е **Summary 2 : D-Stability Condition** Complicated but straightforward Useful for some control performances Im 20 Im 2 Re Re

OUTLINE

1. Stability Analysis: Review

2. D-Stability Analysis

3. Robust Stability Analysis

4. Application to Gene Regulatory

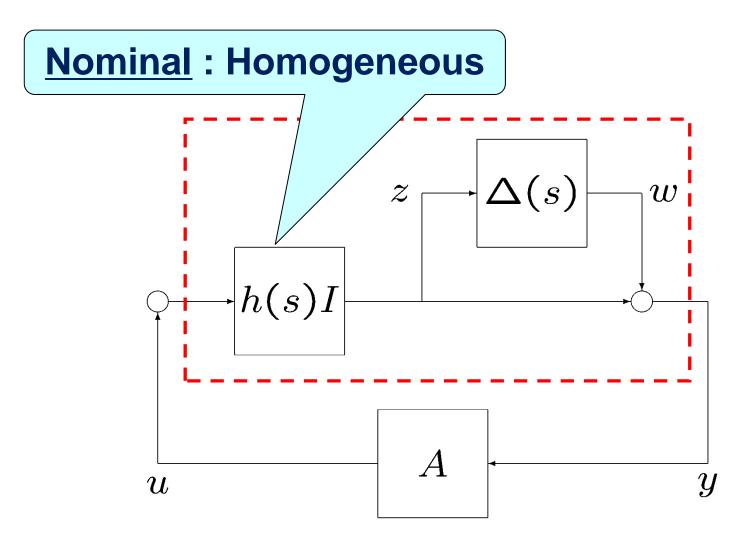
Networks

5. Nonlinear Stability Analysis

6. Conclusion

Multiplicative Perturbations

$$\tilde{H}(s) = (I + \Delta(s)) \cdot h(s)$$



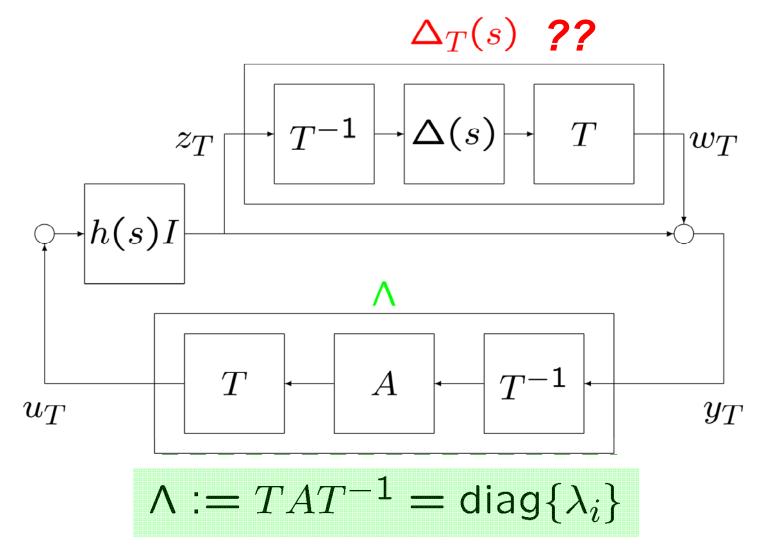
Three Classes of Perturbations

Multiplicative Perturbation:

$$\tilde{H}(s) = (I + \Delta(s)) \cdot h(s)$$

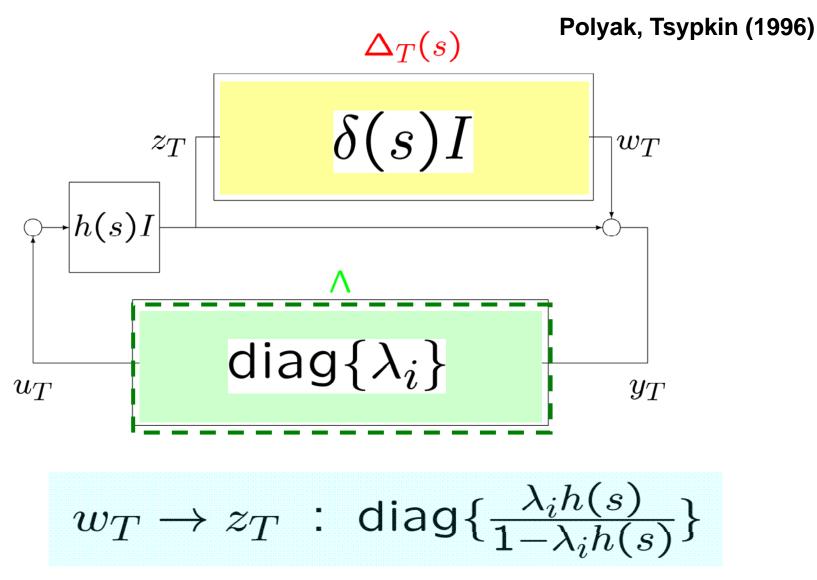
$$\begin{array}{l|l} \hline \textbf{Three Classes}: \\ \hline \textbf{Full perturbation}: \\ \Delta_{\gamma} & := & \{ \ \Delta(s) \in \Delta_p \mid \ \|\Delta\|_{\infty} \leq 1/\gamma \ \} \\ \hline \textbf{Heterogeneous}: \\ \Delta_{d\gamma} & := & \{ \ \Delta(s) \in \Delta_{\gamma} \mid \Delta(s) \ : \ \text{diagonal} \ \} \\ \hline \textbf{Homogeneous}: \\ \Delta_{I\gamma} & := & \{ \ \Delta(s) \in \Delta_{\gamma} \mid \Delta(s) = \delta(s)I \ \} \end{array}$$

Basic Idea



A: diagonalizable

Homogeneous Perturbations



Complementary Sensitivity function (h(s), λ_i)

Robust Stability Condition for Homogeneous Perturbations

$$\tilde{H}(s) = (1 + \delta(s)) \cdot h(s)I$$

\ 7

(ii)

(iii)

Small Gain Criterion Theorem: The following three conditions are equivalent.

(i) The system is robustly stable for
$${f \Delta}_{I\gamma}.$$

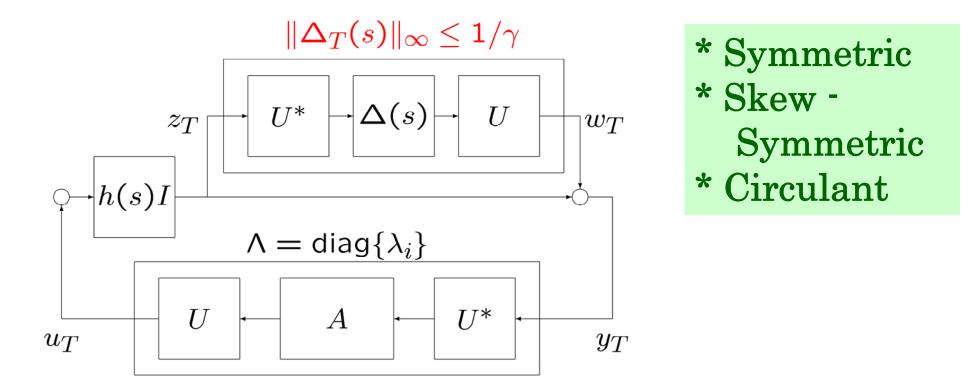
$$\left\|\frac{\lambda h}{1-\lambda h}\right\|_{\infty} < \gamma, \ \forall \ \lambda \in \sigma(A)$$

$$\left|\frac{\lambda}{\phi}\right| < \gamma, \ \forall \ \lambda \in \sigma(A),$$

$$orall \ \phi \in \mathbf{\Phi} := \{1/h(j\omega) | \ \omega \in \mathbb{R} \ \}.$$

A: Normal (T = U: Unitary Matrix)

$$A \in \mathbb{R}^{n \times n}$$
 is normal, i.e., $A^T A = A A^T$.



Sufficiency: small gain condition Necessity: worst case $\Delta(s) = \delta(s)I$

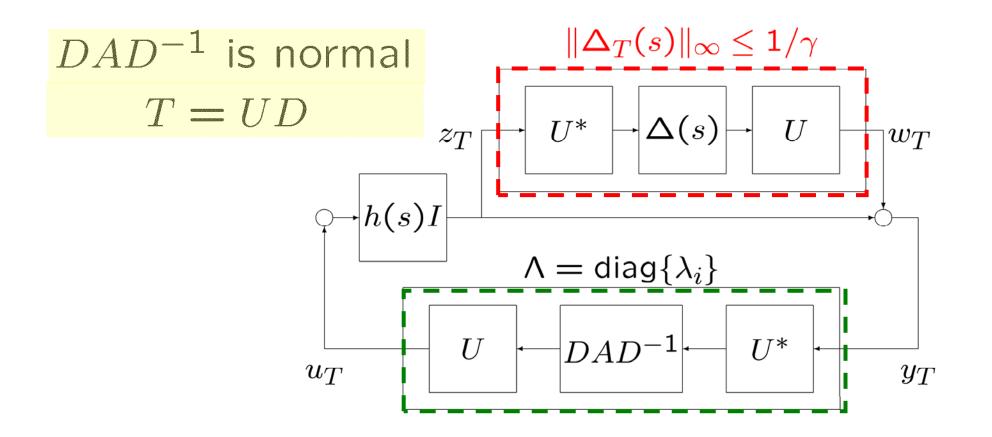
Robust Stability Condition for Full Perturbations

Hara, Tanaka, Iwasaki (ACC2010) Assumption $A \in \mathbb{R}^{n \times n}$ is normal, i.e., $A^T A = A A^T$. **Theorem:** The following three conditions are equivalent. (i) The system is robustly stable for $\Delta_\gamma.$ (ii) $\left\| \frac{\lambda h}{1 - \lambda h} \right\|_{\infty} < \gamma, \ \forall \ \lambda \in \sigma(A)$ (iii) $\left|\frac{\lambda}{\phi-\lambda}\right| < \gamma, \ \forall \ \lambda \in \sigma(A),$ $\forall \ \phi \in \mathbf{\Phi} := \{1/h(j\omega) | \ \omega \in \mathbb{R} \}.$

Heterogeneous Perturbations

 $\Delta(s) = \operatorname{diag}\{\delta_i(s)\}$

 $\forall D = \text{diag}\{d_i\} > 0 \text{ s.t. } D\Delta(s)D^{-1} = \Delta(s)$



Robust Stability Condition for Heterogeneous Perturbations

Assumption

 $\exists D$: diagonal s.t. DAD^{-1} is normal

<u>Theorem</u>: The following three conditions are equivalent.

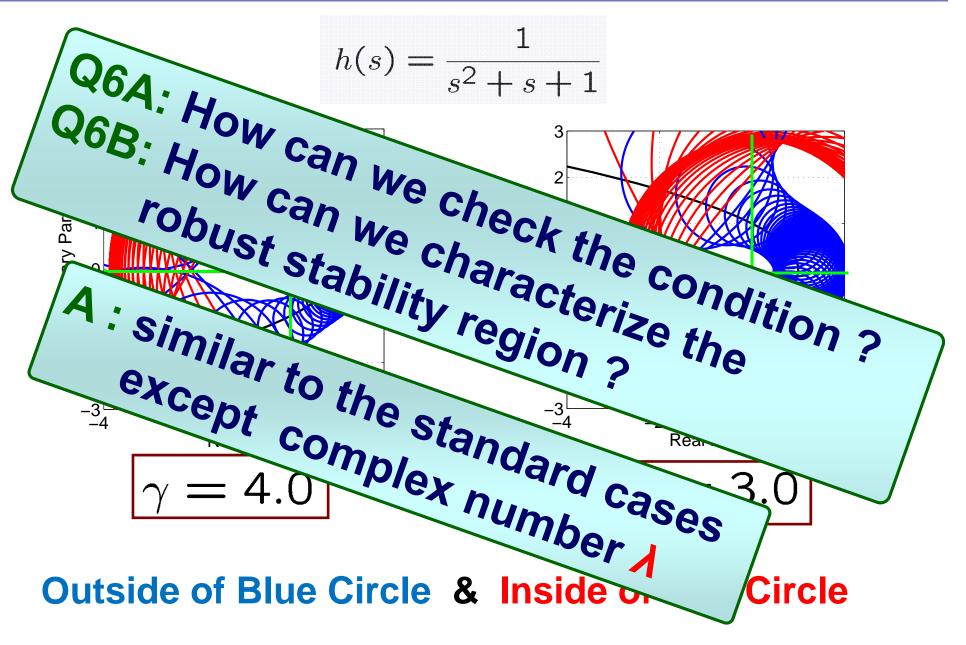
(i) The system is robustly stable for $\Delta_{d\gamma}$. (ii) $\left\|\frac{\lambda h}{1-\lambda h}\right\|_{\infty} < \gamma, \forall \lambda \in \sigma(A)$ (iii) $\left|\frac{\lambda}{\phi-\lambda}\right| < \gamma, \forall \lambda \in \sigma(A),$ $\forall \phi \in \mathbf{\Phi} := \{1/h(j\omega) | \omega \in \mathbb{R} \}.$

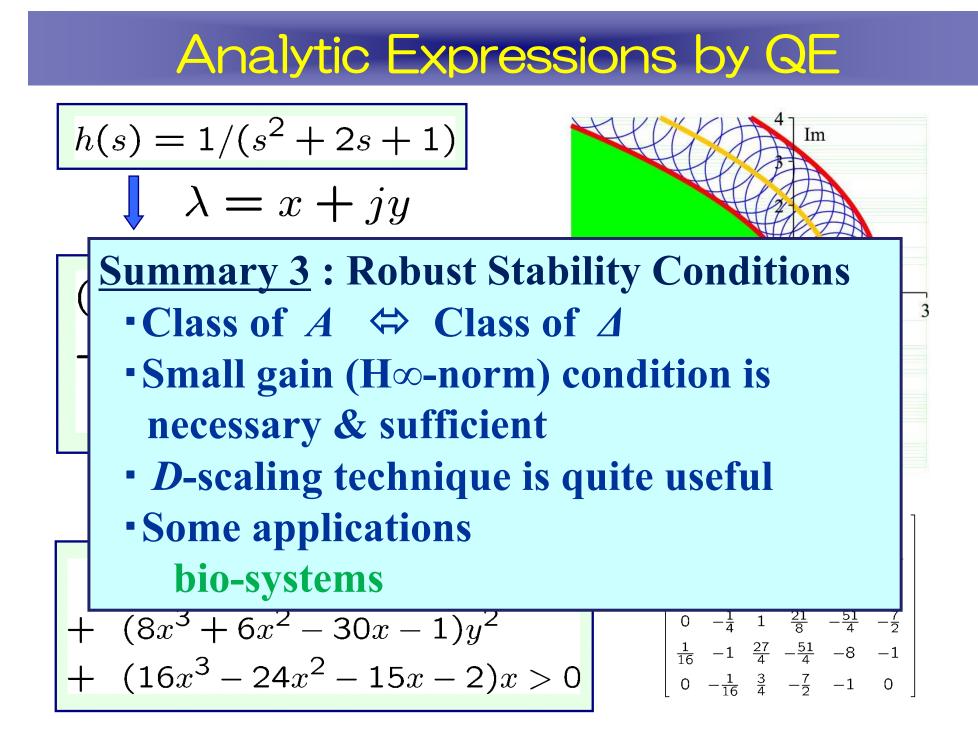
Coprime Factor Perturbations (1/2)

$$G(s) := \begin{bmatrix} A \\ I \end{bmatrix} (I - h(s)A)^{-1} \begin{bmatrix} h(s)I & I \end{bmatrix}$$
$$A = U^* \wedge U$$
$$G(s) = \begin{bmatrix} U^* & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} \wedge \\ I \end{bmatrix} (I - h(s) \wedge)^{-1}$$
$$\begin{bmatrix} h(s)I & I \end{bmatrix} \begin{bmatrix} U & 0 \\ 0 & I \end{bmatrix}$$

$$\begin{split} \|G\|_{\infty} < \gamma \iff \left\| \begin{bmatrix} \lambda \\ 1 \end{bmatrix} (1 - h\lambda)^{-1} \begin{bmatrix} h & 1 \end{bmatrix} \right\|_{\infty} < \gamma, \\ \forall \ \lambda \in \sigma(A) \end{split}$$

Coprime Factor Perturbations (2/2)





OUTLINE

- 1. Stability Analysis: Review
- 2. D-Stability Analysis
- 3. Robust Stability Analysis
- 4. Application to Gene Regulatory Networks
- 5. Nonlinear Stability Analysis
- 6. Conclusion

An Application : Biological rhythms

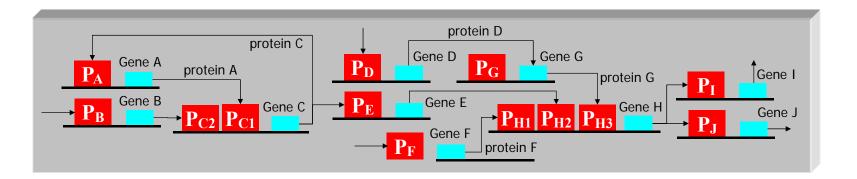
Motivation

Biological rhythms

- 24h-cycle, heart beat, sleep cycle etc.
- caused by periodic oscillations of protein concentrati ons in <u>Gene Regulatory Networks</u>

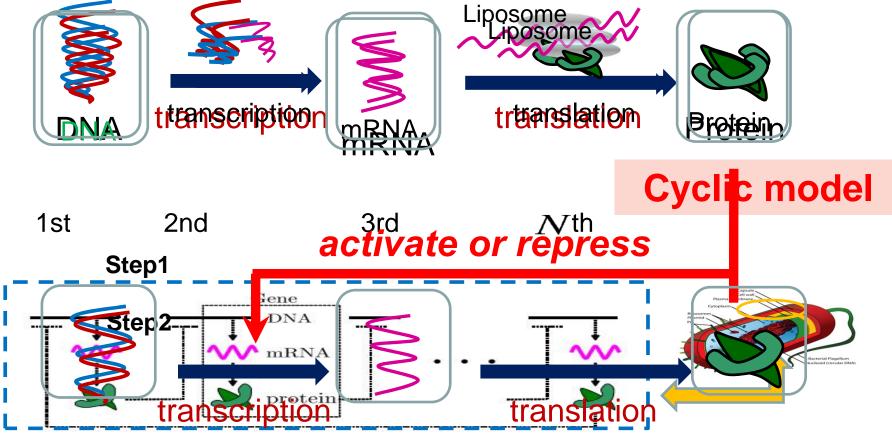
Medical and engineering applications

 Artificially engineered biological oscillators (e.g.) Repressilator [Elowitz & Leibler, *Nature*, 2000]



Gene Regulatory Network Systems

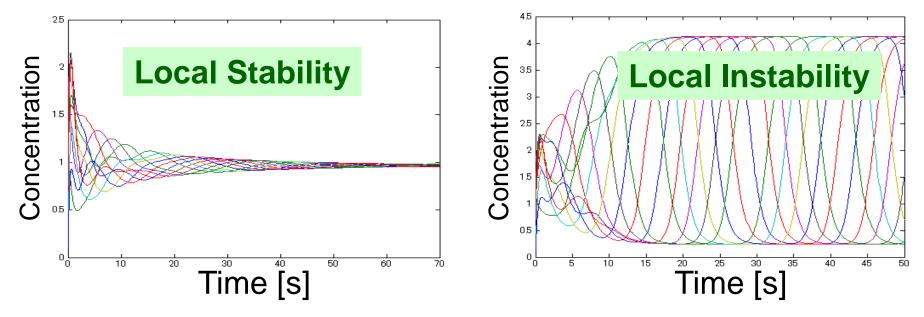
- Biological rhythms: 24h-cycle, heart beat periodic oscillations of protein concentration in <u>Gene Regulatory Networks</u>
 - Protein synthesis : transcription & translation



Convergence or Oscillations?

Numerical simulations

- Changing chemical parameters



Q7: What are the conditions for convergence and the existence of oscillations ?

Nonlinear Analysis

Gene Regulatory Network Model

gene model
$$(i = 1, \dots, N)$$

$$\begin{bmatrix} \frac{d}{dt} \begin{bmatrix} r_i \\ p_i \end{bmatrix} = \begin{bmatrix} -a_i & 0 \\ c_i & -b_i \end{bmatrix} \begin{bmatrix} r_i \\ p_i \end{bmatrix} + \begin{bmatrix} \beta_i \\ 0 \end{bmatrix} f_i(p_{i-1})$$

$$a_i, b_i > 0 : \underset{(1/\text{Time constants})}{\text{Degradation rates}}$$

$$c_i, \beta_i > 0 : \text{Production rates}$$

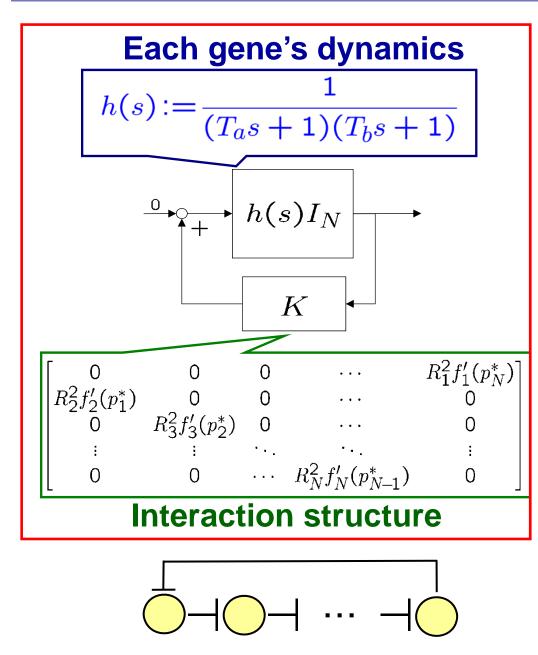
 $f_i(p_{i-1})$: Hill function

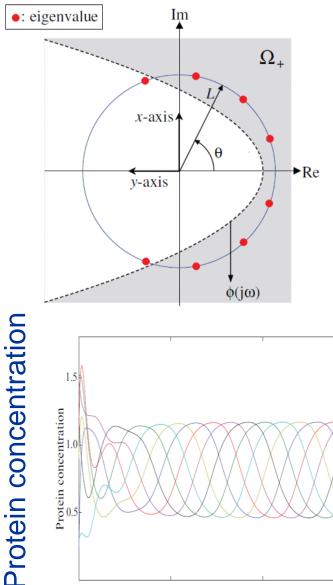
$$f_{i}(p_{i-1}) := \begin{cases} \frac{p_{i-1}^{\nu}}{1+p_{i-1}^{\nu}} \\ \frac{1}{1+p_{i-1}^{\nu}} \end{cases}$$

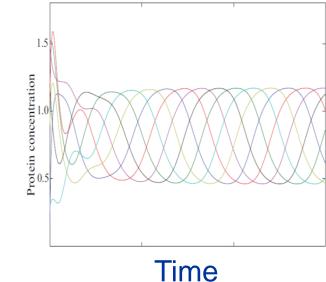
(Mono. increasing for activation)

(Mono. decreasing for repression)

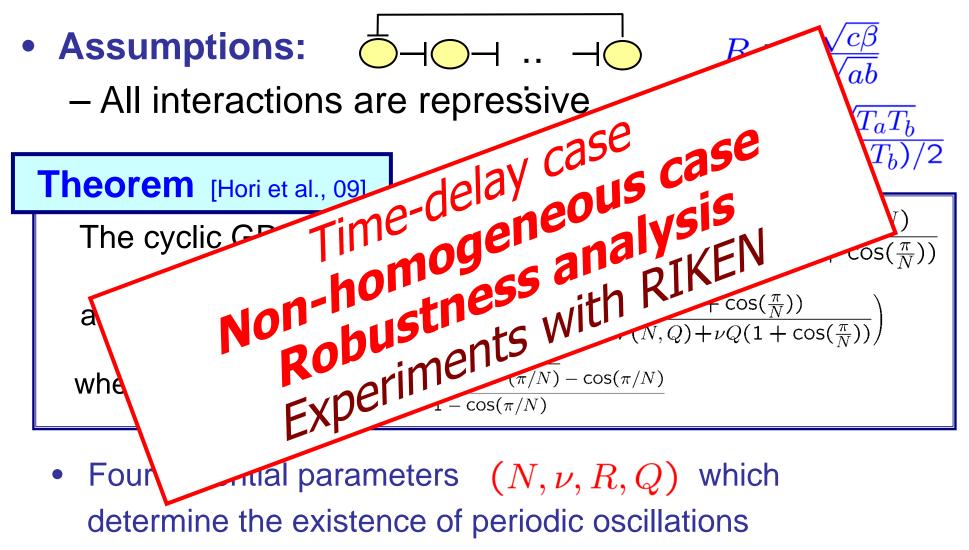
Linearized Gene Network Model







Analytic Criteria



• This coincides with [H. E. Samad *et al.*, 05] N=3, Q=1

Robust Stability Condition

$$h(s) = \frac{1}{(T_a s + 1)(T_b s + 1)}$$

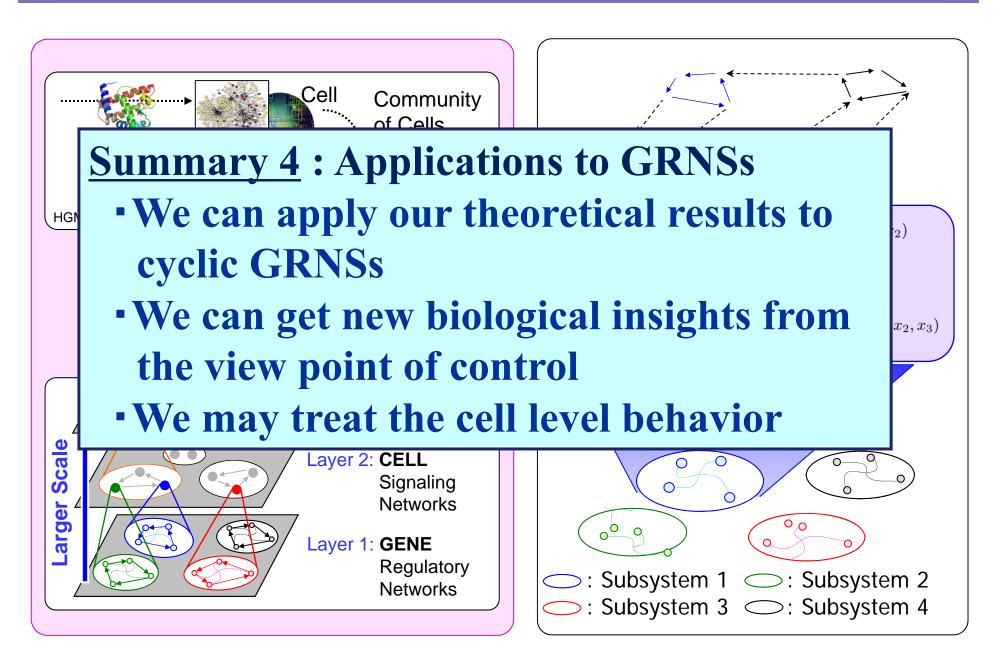
$$A = R^2 \begin{bmatrix} 0 & 0 & 0 & \cdots & \kappa_1 \\ \kappa_2 & 0 & 0 & \cdots & 0 \\ 0 & \kappa_3 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & \kappa_N & 0 \end{bmatrix} \begin{bmatrix} h \\ 1 - \lambda h \end{bmatrix}_{\infty} < \gamma, \forall \lambda \in \sigma(A)$$

$$\exists D : \text{ diagonal s.t.} \\ DAD^{-1} \text{ is normal} \\ Q := \frac{\sqrt{T_a T_b}}{(T_a + T_b)/2} R := \frac{\sqrt{c\beta}}{\sqrt{ab}}$$

$$L := \prod_{k=1}^{N} |\frac{df_i}{dp}|_{p^*}|^{\frac{1}{N}}$$

$$\text{More Robust as } N, R^2, Q, L \text{ decrease.}$$

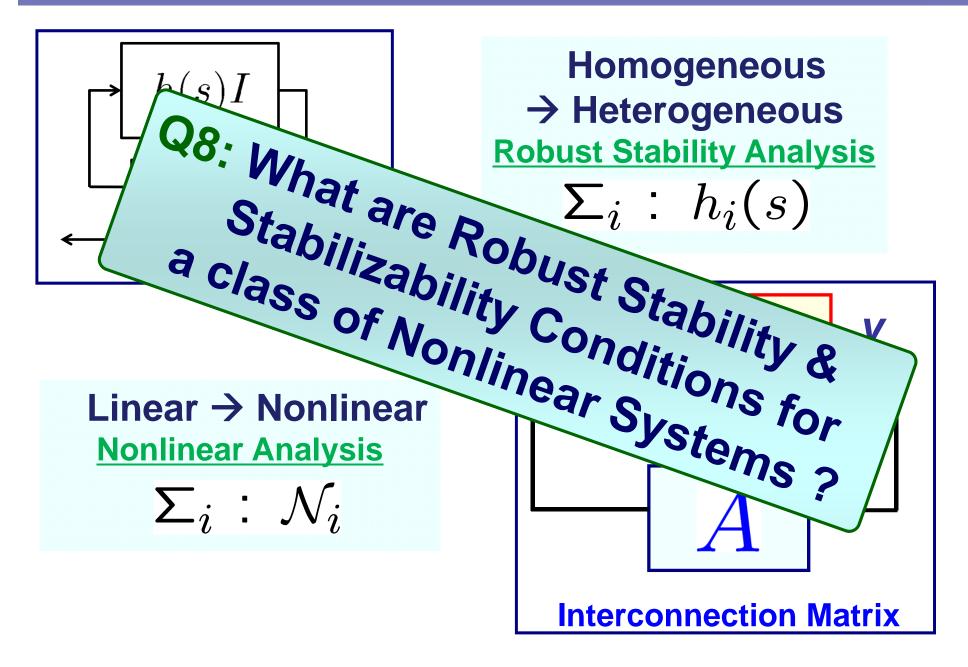
Hierarchical Bio-Network Systems



OUTLINE

- 1. Stability Analysis: Review
- 2. D-Stability Analysis
- 3. Robust Stability Analysis
- 4. Application to Gene Regulatory Networks
- 5. Nonlinear Stability Analysis
- 6. Concluding Remarks

Linear \rightarrow Nonlinear



(Q, S, R) Dissipativity

Definition

A system is called (Q, S, R)-dissipative if there exists a positive definite function V(x) called storage function, such that for all $x \in \mathcal{X}$

$$V(x(T)) - V(x(0)) \le \int_0^T w(u(t), y(t)) dt$$

holds for all inputs $u \in \mathcal{U}$ and all finite $T \ge 0$, where w(u, y) is quadratic supply rate given by

$$w(u,y) = y^T Q y + 2y^T S u + u^T R u$$

with $R = R^T \in \mathbb{R}^{m \times m}$, $S \in \mathbb{R}^{p \times m}$, $Q = Q^T \in \mathbb{R}^{p \times p}$.

Stability for Dissipative Agents

(Hirsch, Hara: IFAC2008)

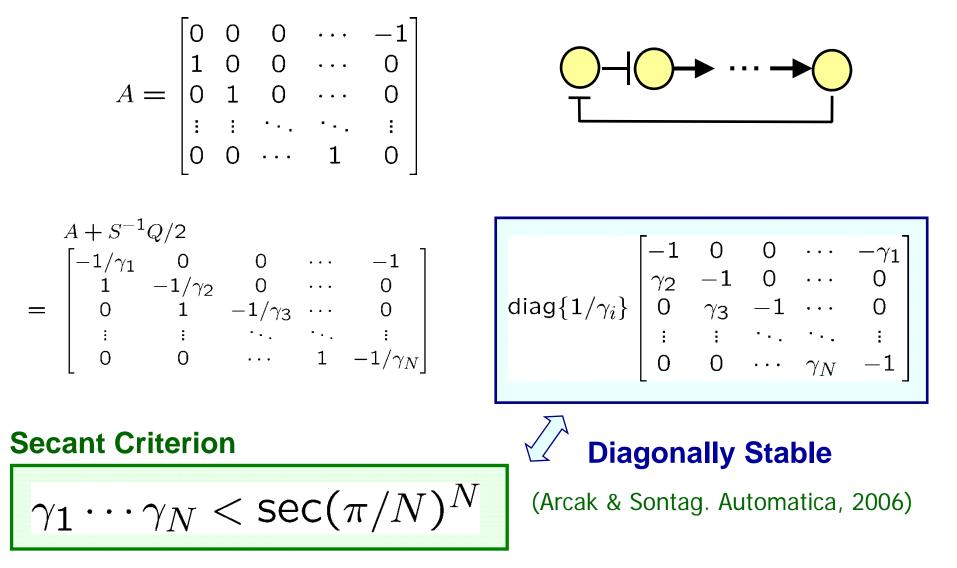
<u>Agent Dynamics</u> — SISO (Q, S, R)-dissipative

$$\begin{split} \dot{x}_i &= f_i(x_i) + g_i(x_i)u_i \\ y_i &= h_i(x_i) \end{split} \qquad \begin{array}{l} Q = \operatorname{diag}\{Q_i\} \leq 0, \\ S = \operatorname{diag}\{S_i\}, \\ R = \operatorname{diag}\{R_i\} \geq 0. \end{split} \\ \hline \mathbf{Theorem (LMI)} \qquad \qquad \begin{array}{l} V := \sum_{i=1}^N d_i \cdot V_i \\ V := \sum_{i=1}^N d_i \cdot V_i \end{array} \\ \hline \mathbf{If}^{\exists} \text{ a diagonal matrix } D > 0 \text{ such that} \\ A^T DRA + DSA + A^T S^T D + DQ < 0 \end{array} \\ \hline \text{holds, then the networked system is asymptot-ically stable.} \end{split}$$

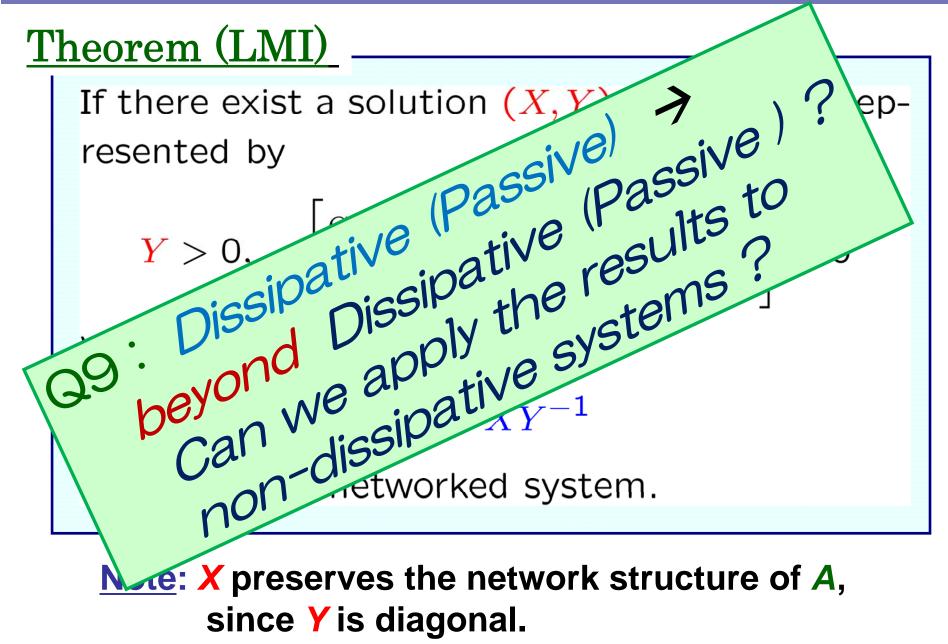
If R = 0 and S > 0, then $A + S^{-1}Q/2$: diagonally stable

Stability Condition for GRNs

Cyclic Structure with Negative Feedback

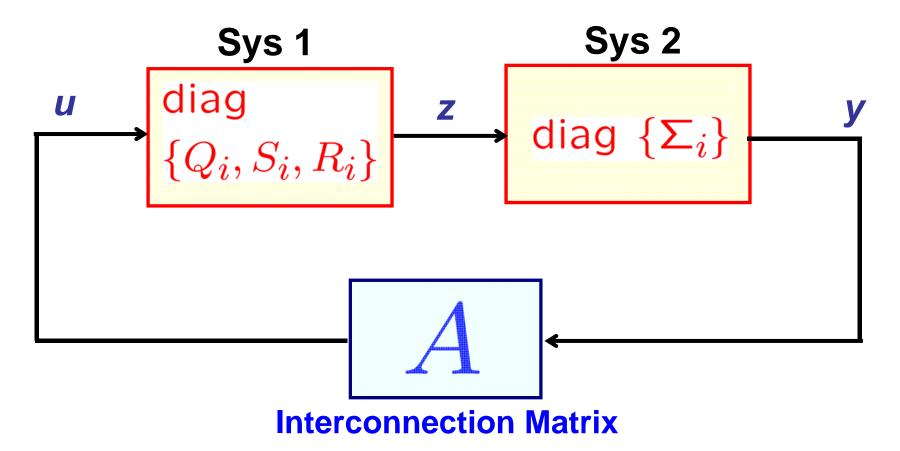


Stabilization

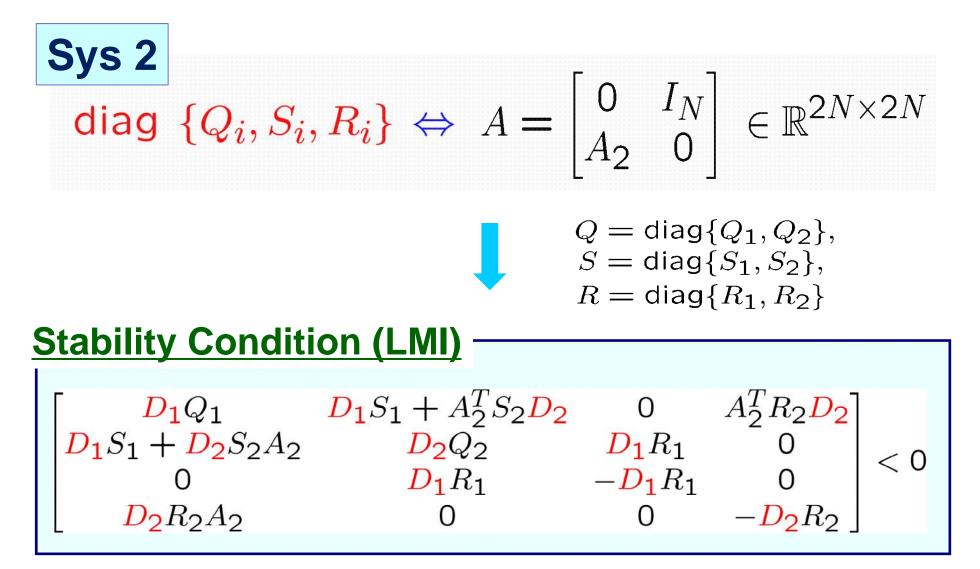


MADS with Cascaded Dissipative Systems

A class of multi-agent dynamical systems based on dissipative properties

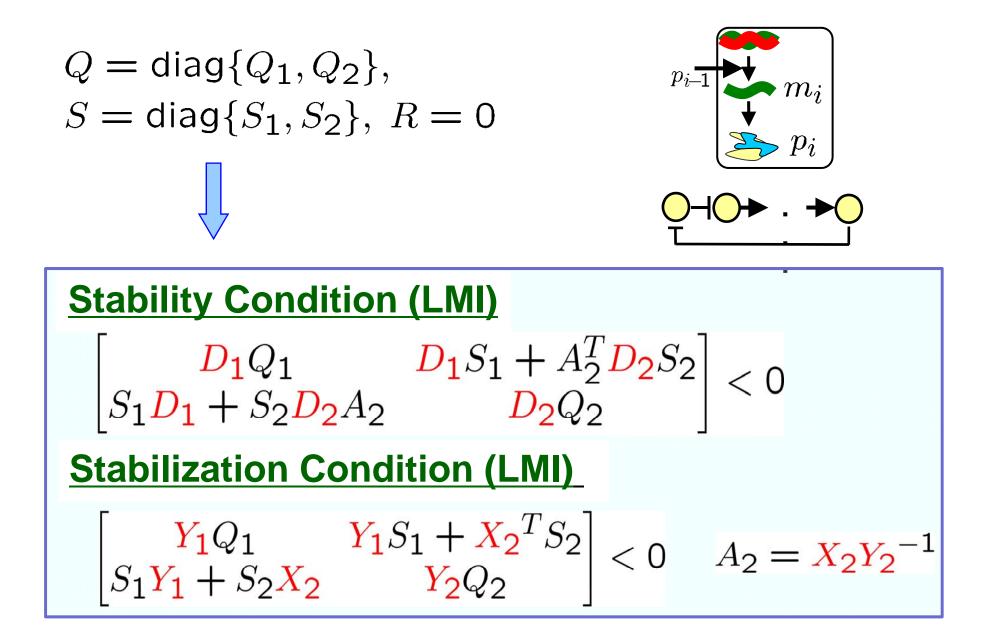


Two Cascaded Dissipative Systems

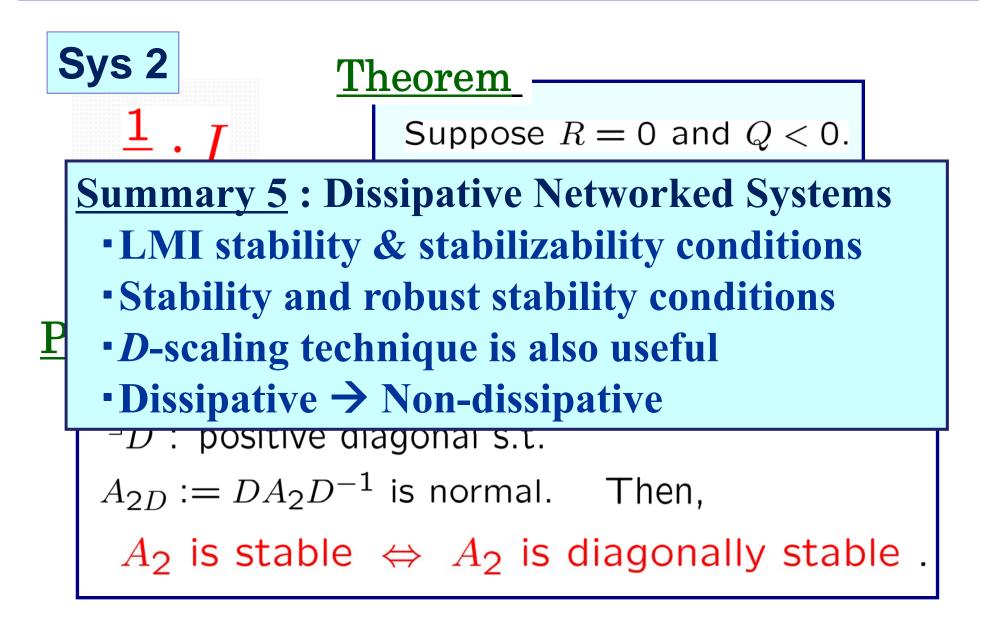


 $D_1 > 0, D_2 > 0$: diagonal

Gene Regulatory Network



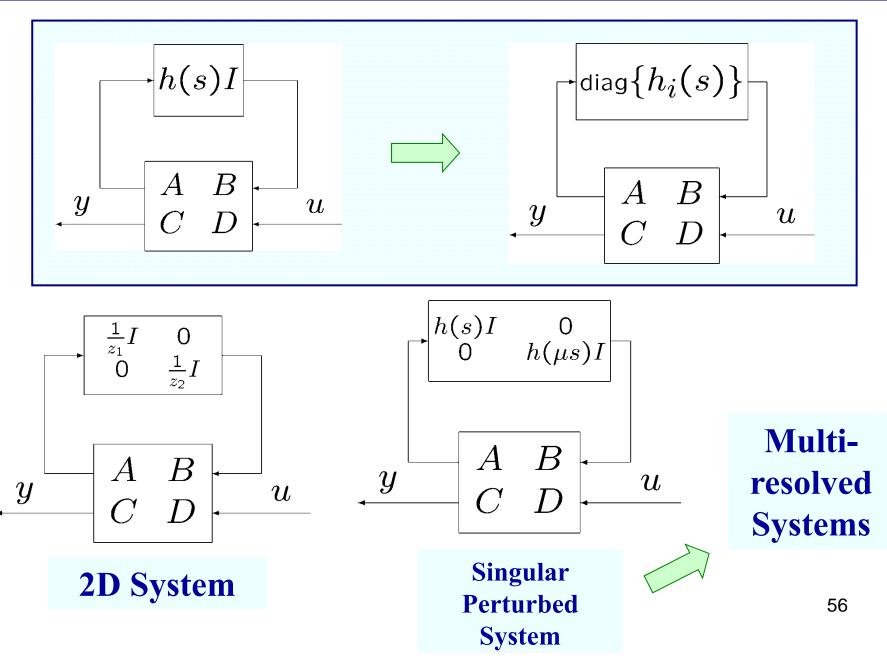
Dissipative + Integrator



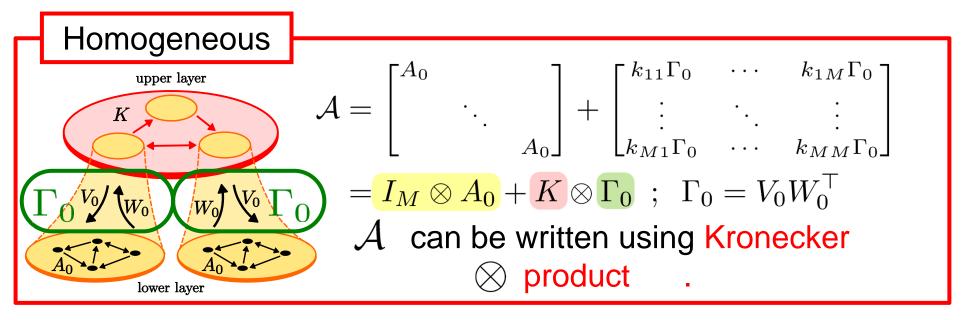
OUTLINE

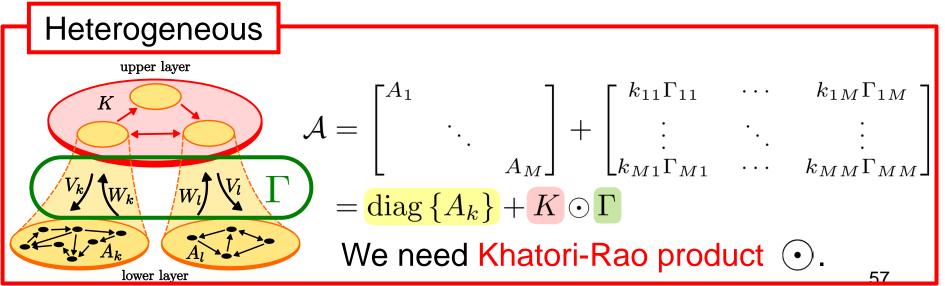
- 1. Stability Analysis: Review
- 2. D-Stability Analysis
- 3. Robust Stability Analysis
- 4. Application to Gene Regulatory Networks
- 5. Nonlinear Stability Analysis
- 6. Concluding Remarks

New Framework for System Theory



Homogeneous vs Heterogeneous



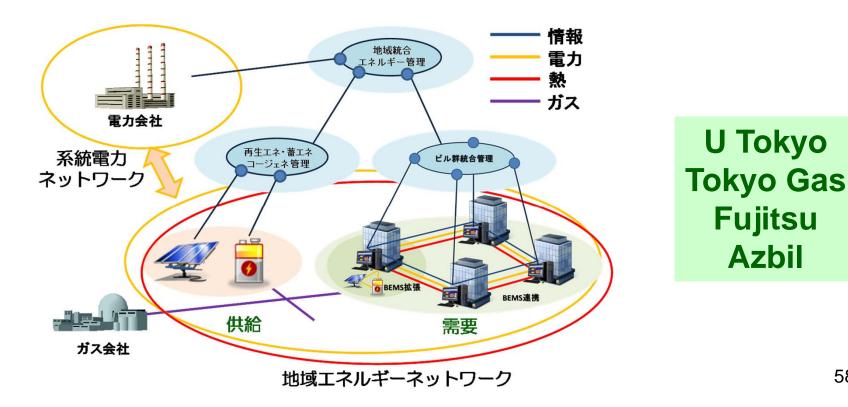


Smart Energy NW and Energy Saving

Smart Energy Network

Electric power network + Gas energy network

Multi-resolved Hierarchical Modeling \rightarrow Multi-resolved Prediction \rightarrow Hierarchical Decentralized Control



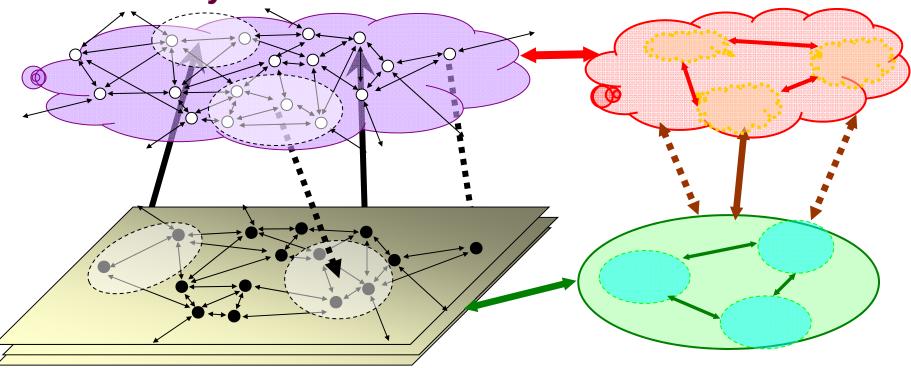
58

Harmony with Nature and Social System

Networked Hierarchical Cyber Physical System

Physical NW

Human NW



Integrated Control NW (Measurement, Prediction & Control) Economic NW

Acknowledgements

1 Glocal Control

Jun-ichi Imura (Tokyo Tech.) Koji Tsumura (U. Tokyo)

Koichiro Deguchi (Tohoku U.)

(2) LTI Systems with Generalized Freq. Vars.

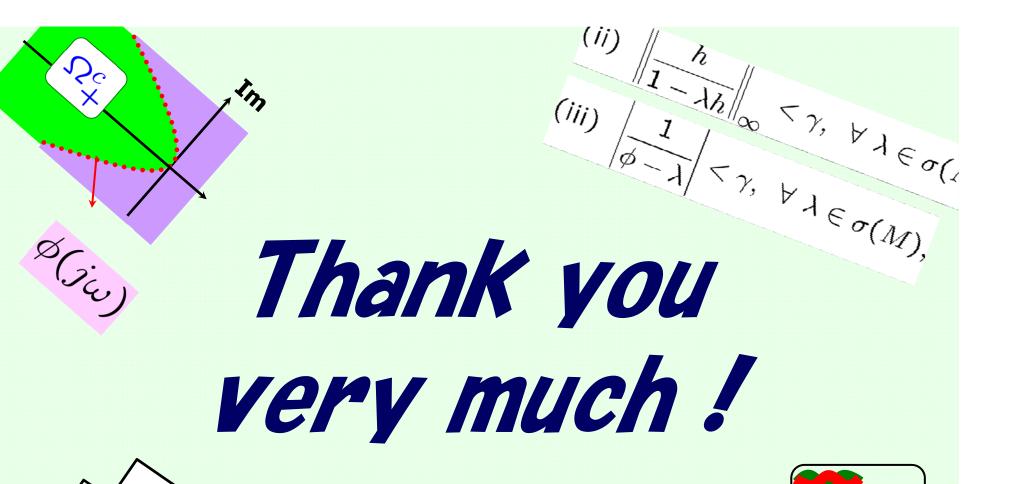
Tetsuya Iwasaki (UCLA) Hideaki Tanaka (U. Tokyo → Denso) Masaaki Kanno (Niigata U.)

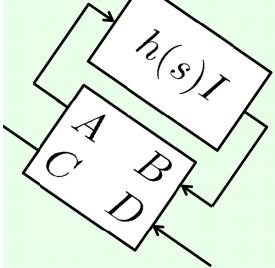
3 Gene Regulatory Networks

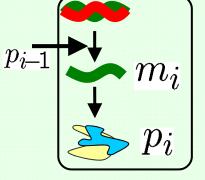
Yutaka Hori (U. Tokyo) Tae-Hyoung Kim (Chung-Ang U.)

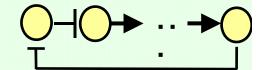
(4) Nonlinear Analysis

Sandra Hirsch (TU Munich)









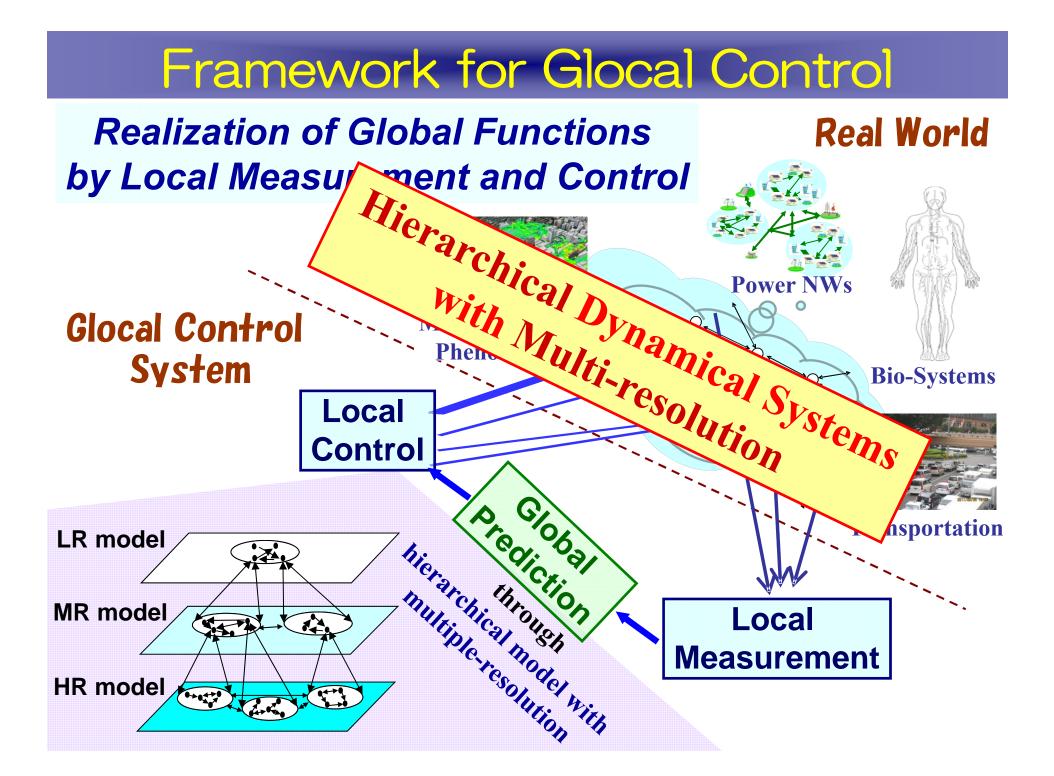


Image of Glocal Control System

