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Abstract— It is known that the conventional second law of
thermodynamics is not applicable to thermodynamic systems
when feedback control is applied to such systems. A generalized
form of the second law should be introduced in this case,
which contains an additive term that describes the correlation
between the microstates and the measurement outcomes. In
this study, we consider a situation where a linear stochastic
thermodynamic system, which is in contact with a heat bath,
is controlled over a noiseless digital channel to evaluate how
channel capacity and control performance are interrelated
considering the second law of thermodynamics. We show that
in this case, the second law of thermodynamics is inclusive of
a term that represents channel capacity. We then show that
given a fixed value of free energy difference, we can extract
a larger amount of work from the system and obtain higher
control performance if more channel capacity is used, in the
case where an optimal controller and a proper encoder are used
in the control system.

I. INTRODUCTION

The second law of thermodynamics describes the irre-
versibility of a thermodynamic process. For a microscopic
thermodynamic system that is in contact with a constant
temperature heat bath, the second law of thermodynamics
can be described by the principle of minimum work:

⟨W⟩ ≥ ∆F, (1)

where ⟨·⟩ denotes the stochastic average, W denotes the
work done to the system, and ∆F denotes the Helmholtz
free energy difference between two different equilibrium
states [2]. The equality holds if and only if the process is
reversible. From this equation, ∆F can be considered to be
the maximum work required to move from an equilibrium
state to another equilibrium state in an isothermal process.

However, in the late 19th century, the validity of the
traditional second law (1) was questioned for application to a
system incorporating measurements and feedback. A thought
experiment concerning this is termed as the Maxwell’s
demon, the simplest model of which is a single molecule
heat engine called the Szilard engine [1]. In recent years, it
has been recognized that for the entire system including the
demon that performs measurements and feedback, the second
law is not broken, and it is still being actively studied. For
example, Sagawa & Ueda [6] generalized the second law of
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thermodynamics with a single measurement and feedback as
follows:

⟨W⟩ ≥ ∆F − kBTI (2)

An additive term −kBTI appears on the right side of the
inequality compared to that one without feedback. Here, I
characterizes the mutual information [15] between the mi-
crostates and the measurement outcomes. Fujitani & Suzuki
[7] generalized the second law for a linear Langevin system,
where measurements are performed at many serial discrete
times. They showed that in this case, the additive term re-
duces to the mutual information between the microstates and
the measurement outcomes that correspond to the innovation
process of the original system.

From the aforementioned, we can interpret the second
law for systems with measurements and feedback by in-
troducing the concept of information into thermodynamics.
Moreover, in the field of control theory, the evaluation of
the relationship between control performance and channel
capacity has been actively studied by introducing the concept
of information into control theory, in recent years [9]-[13].
Therefore, the main objective of this paper is to investigate
the properties of thermodynamic systems from the view-
point of control theory and information theory, and combine
physics with these two fields. To that end, we will consider
a situation where a linear stochastic thermodynamic system
that is in contact with a heat bath, is controlled over a
noiseless digital channel. We show that in this case, the
second law of thermodynamics includes a term that contains
channel capacity. We then show that given a fixed value of
free energy difference, we can extract a larger amount of
work from the system and obtain higher control performance
if more channel capacity is used, in the case where an optimal
controller and a proper encoder are used in the control
system.

The organization of this paper is as follows. In Section II,
we give the problem formulation. In Section III, we provide
the optimal controller design method and give some essential
definitions. In Section IV, we give the main results and
proofs. In Section V, we give some discussions on the main
results. Finally, in Section VI, we give the conclusions and
future works.

II. PROBLEM FORMULATION

We consider a control system which consists of a classical
thermodynamic system, an encoder, a noiseless digital chan-
nel, a decoder and a controller (Fig. 1.). The microstate xk,
channel input ak, channel output bk, decoder output yk, and
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Fig. 1. Control system.

control input uk are generated in the following order:

u0, x0, x1, a1, b1, y1, u1, · · · , xN , aN , bN , yN , uN (3)

Upper case variables like X represent random variables and
lower case variables like x represent particular realizations.
Let x[1,k] B (x1, x2, . . . , xk).

A. Thermodynamic System

We assume that the dynamics of the plant, which is a
microscopic thermodynamic system that is in contact with a
heat bath of temperature T , is given by the following discrete
time, stochastic, linear Langevin equation

Xk+1 = FXk +GUk +Wk (4)

for k = 0, 1, · · · ,N − 1,N ≥ 2, where Xk ∈ Rd represents
the microstate, Uk ∈ Rm represents the control input, and Wk

represents the thermal noise. We assume that {Wk} is an i.i.d.
sequence of random variables with zero mean and covariance
KW . We also assume that (F,G) is controllable.

We fix the input u0 at time k = 0 to be a constant, and
keep the plant in a thermal equilibrium state until time k = 1
(Fig. 2.). The probability density of x0 satisfies the canonical
distribution under the input u0. The input value changes
from uk to uk+1 at time k + 1, and maintains a constant
value at time interval [k, k + 1), while the microscopic state
changes from xk to xk+1 in this interval. We denote H(xk, uk)
as the Hamiltonian of the plant with state xk under the
control input uk, and denote H(xk, uk−1) as the Hamiltonian
just prior to time k. At time k = N we fix the input uN

to a constant. The work W(x[1,N], u[1,N]) done on the plant,
the heat Q(x[0,N], u[0,N−1]) absorbed by the plant and the
Helmholtz free energy difference ∆F(u0, uN) can be then
expressed as follows [4][7]:

W(x[1,N], u[1,N]) =
N−1∑
k=0

H(xk+1, uk+1) − H(xk+1, uk), (5)

Q(x[0,N], u[0,N−1]) =
N−1∑
k=0

H(xk+1, uk) − H(xk, uk), (6)
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Fig. 2. Control system.

∆F(u0, uN) = −kBT ln(Z(T, uN)/Z(T, u0)), (7)

where Z(T, u j) denotes the partition function. It should be
noted that ∆F here is not the difference in the Helmholtz
free energy between the initial equilibrium state and the
final state at time k = N, but the difference between the
initial equilibrium state and the equilibrium state with the
temperature T under the control protocol uN , because the
final state at time k = N is not in thermal equilibrium.

Incidentally, we can separate the state variable Xk as
follows:

Xk = X̄k + X̃k (8)

X̄k+1 = FX̄k +Wk (9)

X̃k+1 = FX̃k +GUk (10)

Eq. (9) is called the innovation process. Assume that x̃0 is
fixed to 0:

x̃0 = 0 (11)

Then, we can use Xk to express the state corresponding to
the innovation process X̄k as follows:

X̄k = Xk −
k−1∑
i=0

Fk−i−1GUi (12)

B. Noiseless Digital Channel

We introduce a noiseless digital channel as the model
of communication constraint. The channel input and output
alphabets A and B are assumed to be the same: A = B. If
the alphabet size is |A| = m, then the rate of the channel or
the channel capacity is R = ln m. The channel is noiseless
and memoryless, i.e., given a channel input symbol ak, the
channel output bk satisfies bk = ak for all k.

C. Encoder and Decoder

We use the equi-memory expectation predictive encoder
and decoder (EMEP encoder and decoder) [12][13], i.e., the
encoder is of the form

Ak = q
[
X̄k − E(X̄k |B[1,k−1])

]
, (13)
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and the decoder is of the form

Yk = Ȳk +

k−1∑
i=0

Fk−i−1GUi, (14)

where q [·] denotes a quantizer, E(·) represents the expected
value of a random variable, and Ȳk is given by

Ȳk = E(X̄k |B[1,k]). (15)

Note that the microstate is assumed to be fully observed by
the encoder. Since both the encoder and decoder have access
to the control signals (Fig. 1.), X̄k can be calculated by the
encoder given Xk, and Yk can be calculated by the decoder
given Ȳk. The output of the decoder can be regarded as the
estimate of the state of the plant.

Let ∆k = Xk − Yk be the state estimation error. Then, it
can be shown that for equi-memory expectation predictive
encoders and decoders, E(∆k) = 0 and ∆k is independent of
the control actions chosen [12].

D. Cost Function

Consider the following cost function:

JN = E

N−1∑
k=1

(Xk+1 − xd)′ Q (Xk+1 − xd) + U′kS Uk

 , (16)

where xd denotes the target state. Let Q ∈ Rd×d be positive
semi-definite, S ∈ Rd×d be positive definite, and (A,Q1/2) be
observable. The notation X′ represents the transposes of X.
Given a fixed channel capacity, the value of JN is determined
by the design method of the controller and the quantizer in
the encoder. Since the minimization of JN means to convert
the state value Xk to the target value xd as soon as possible by
using control inputs as small as possible, the realization value
of JN can be regarded as an index as the control performance,
i.e., a smaller value of JN means higher control performance.
In the following, without loss of generality, we set the value
of xd to 0, i.e., we consider the following cost function for
simplicity:

JN = E

N−1∑
k=1

X′k+1QXk+1 + U′kS Uk

 (17)

E. Research objective

We derive the second law with a term representing the
channel capacity, and investigate the relationship between
the second law of thermodynamics, channel capacity, and
control performance.

III. MINIMIZATION OF THE COST FUNCTION

Under full state observation, it is known that the optimal
control law that minimizes (17) is given by the following
form [14]:

Uk = LkXk, (18)

Lk = −(G′Dk+1G + S )−1G′Dk+1F, (19)

where DN = Q,Dk (k = 2, 3, · · · ,N − 1) is given by

Dk = F′(Dk+1 −Dk+1G(G′Dk+1G + S )−1G′Dk+1)F +Q. (20)

In this case, JN takes the minimum value
∑N−1

k=1 tr(Dk+1KW )+
E
(
x′1D1x1

)
. This is the well-known LQ stochastic optimal

control. Under communication constraints, this result no
longer holds. However, we can reduce this problem into
a fully-observed LQ problem by introducing a new “fully
observed” process [12].

The evaluation function JN can be rewritten as follows:

JN = E

N−1∑
k=1

(Yk+1 + ∆k+1)′Q(Yk+1 + ∆k+1) + U′kS Uk


= E

N−1∑
k=1

Y ′k+1QYk+1 + U′kS Uk

 + E

N−1∑
k=1

∆′k+1Q∆k+1

 ,
(21)

where the second equality holds because
E
(
Y ′k+1Q∆k+1|b[1,k+1], u[1,k]

)
= 0 holds for every(

b[1,k+1], u[1,k]
)
. Since ∆k is independent of the control

actions chosen, the second term of (21) is not affected by
control inputs. Therefore, the controller should be chosen to
minimize the first term of JN given a fixed channel capacity
and encoder.

If we define a new “fully observed” process with the
decoder’s estimate of the state, Yk, as the new state, our new
system has the dynamics

Yk+1 = FYk +GUk +
¯̄Wk, (22)

where ¯̄Wk = E
(
F∆k +Wk |B[1,k+1]

)
can be considered to be

the process noise. Since { ¯̄Wk} are uncorrelated [12], the
dynamics (22) with a cost given by the first term of (21)
is a fully observed LQ problem and the control inputs can
be chosen to be the same as (18) − (20). We refer to the
controller given by (18)−(20) as the optimal controller, which
is independent of the channel capacity and the design method
of the quantizer in the encoder.

We now calculate JN given the optimal controller. Since
∆k+1 can be written as

∆k+1 = F∆k +Wk − ¯̄Wk, (23)

K ¯̄Wk
, the covariance matrix of ¯̄Wk, can be written as follows:

K ¯̄Wk
= FΛkF′ + KW − Λk+1 (24)

Using (24), JN can be calculated as follows:

JN =

N−1∑
k=1

tr
(
Dk+1K ¯̄Wk

)
+ E
(
∆′k+1Q∆k+1

)
+ E
(
x′1D1x1

)
=

N−1∑
k=1

tr
(
Dk+1

(
FΛkF′ + KW − Λk+1

))
+E
(
∆′k+1Q∆k+1

)
+ E
(
x′1D1x1

)
= ĴN +

N−1∑
k=1

E
(
∆′k Mk∆k

)
, (25)

where

ĴN =

N−1∑
k=1

tr (Dk+1KW ) + E
(
x′1D1x1

)
, (26)
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M1 = F′D2F, (27)

Mk = F′Dk+1F + Q − Dk (k = 2, 3, · · · ,N − 1) (28)

Before moving to the main results, we introduce some
definitions that will turn out to be important when discussing
the relationship between channel capacity and control perfor-
mance.� �

Definition 1: The estimation error measure ΘN,{Mk} is
defined as

ΘN,{Mk} B
N−1∑
k=1

E
(
∆′k Mk∆k

)
. (29)� �

We can easily find that ΘN,{Mk} can be written as the
following:

ΘN,{Mk} = JN − ĴN . (30)

� �
Definition 2: We refer to a proper encoder as the one
that realizes a given value of ΘN,{Mk} (or JN−ĴN) with the
least channel capacity given the optimal controller. We
denote the channel capacity in this case as R{Mk}

N (ΘN,{Mk})
or R{Mk}

N (JN − ĴN).� �
Note that R{Mk}

N (ΘN,{Mk}) is a decreasing function of ΘN,{Mk}
and the value goes to infinity as ΘN,{Mk} → 0 (Fig. 3.).� �

Definition 3: We refer to the optimal encoder as the one
that minimizes the value of ΘN,{Mk} given the optimal
controller and a fixed channel capacity.� �
Note that the optimal encoder must be a proper encoder,

while a proper encoder is not the optimal encoder in general.

IV. MAIN RESULTS

We now present our main results.� �
Theorem 1: Consider the microscopic thermodynamic
system (4) that is in contact with a heat bath of
temperature T and is in a thermal equilibrium state at
time k = 0. If the system is controlled via a noiseless
digital channel with capacity R and EMEP encoder and
decoder until time k = N, then the following inequality
holds:

⟨W⟩ ≥ ∆F − kBT (N − 1) R (31)� �
Proof 1: We only show the outline of the proof hereafter

for the page limitation. We prove this theorem by showing
the following formulas in Steps 1 − 3.

Step 1 ⟨W⟩ ≥ ∆F − kBT I
(
X̄[1,N−1]; Ȳ[1,N−1]

)
Following [7], in the case where the initial states of the

forward and backward processes are in equilibrium under u0
and u†0, the detailed fluctuation theorem [3]-[5] can be written
as

eβ(∆F−W)G =←−G , (32)

where
G = f0(x0) fk+1|k(xk+1|xk; uk), (33)

←−G =←−f 0(x∗N)←−f k|k+1(x∗k+1|x∗k; u∗k). (34)

Here, the superscript ∗ denotes the time reversal, f0(x0)
and ←−f 0(x∗N) denote the probability density of the initial
state of the forward and backward processes respectively,
fk+1|k(xk+1|xk; uk) denotes the conditional probability density
of Xk+1 given that xk and uk are fixed, and ←−f k|k+1(x∗k+1|x∗k; u∗k)
denotes the conditional probablity density of X∗k+1 given that
x∗k and u∗k are fixed.

From (4), (8), (9) and (11), we can obtain

G = f (x̄[0,N]). (35)

On the other hand, for the backward process, no estimation
is performed and all the actuating signals have already been
determined by the values of ȳ[1,N−1]. Thus, we can rewrite
(34) into

←−G =←−f 0(x∗[0,N]|ȳ[1,N−1]). (36)

Here, we note that f (x̄[0,N]|ȳ[1,N−1]) can be rewritten as

f
(
x̄[0,N]|ȳ[1,N−1]

)
= f
(
x̄[0,N]

)
eI(x̄[1,N−1] |ȳ[1,N−1]), (37)

where

I
(
x̄[1,N−1]|ȳ[1,N−1]

)
B ln

f
(
x̄[1,N−1]|ȳ[1,N−1]

)
f
(
x̄[1,N−1]

) . (38)

We can thus rewrite (35) as:

G = e−I(x̄[1,N−1] |ȳ[1,N−1]) f
(
x̄[0,N]|ȳ[1,N−1]

)
(39)

Let p(·) denote the probability mass function. From (32),
(36) and (39), we obtain

1 =

∫
dx[0,N]

∑
ȳ[1,N−1]

p
(
ȳ[1,N−1]

)←−G
= eβ∆F⟨e−βW−I(x̄[1,N−1] |ȳ[1,N−1])⟩. (40)

Finally, by using Jensen’s inequality, we can obtain the
inequality in Step 1:

⟨W⟩ ≥ ∆F − kBT I
(
X̄[1,N−1]; Ȳ[1,N−1]

)
(41)

Here, I
(
X̄[1,N−1]; Ȳ[1,N−1]

)
is the mutual information [15][16]

between X̄[1,N−1] and Ȳ[1,N−1], where X̄k is a continuous
random variable and Ȳk is a discrete random variable.

Step 2 I
(
X̄[1,N−1]; Ȳ[1,N−1]

)
= H
(
Ȳ[1,N−1]

)
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From (13), we can conclude that bk is uniquely determined
given x̄k and b[1,k−1]. We denote this by(

x̄k, b[1,k−1]
)⇒ bk. (42)

Now we suppose that x̄[1,k] ⇒ b[1,k]. From (13) and (42)
we obtain

x̄[1,k+1] ⇒
(
b[1,k], x̄k+1

)⇒ (b[1,k], bk+1
)⇒ b[1,k+1]. (43)

From the above and the fact that x̄1 ⇒ b1, we can conclude
that x̄[1,k] ⇒ b[1,k]. Furthermore, we obtain from (15) that

b[1,k] ⇒ ȳk. (44)

From (42), (44) and x̄[1,k] ⇒ b[1,k], we have

x̄[1,k] ⇒ ȳ[1,k]. (45)

Therefore,
H
(
Ȳ[1,N]|X̄[1,N]

)
= 0, (46)

where H(·) denotes entropy [15]. We then obtain the equation
in Step 2 as

I
(
X̄[1,N]; Ȳ[1,N]

)
= H

(
Ȳ[1,N]

)
− H
(
Ȳ[1,N]|X̄[1,N]

)
= H

(
Ȳ[1,N]

)
. (47)

Step 3 ⟨W⟩ ≥ ∆F − kBT (N − 1) R

It is clear from (15) that b[1,k] ⇒ ȳ[1,k], so we have the
following inequality:

H(B[1,N−1]) = H(B[1,N−1], Ȳ[1,N−1])
= H(Ȳ[1,N−1]) + H(B[1,N−1]|Ȳ[1,N−1])
≥ H(Ȳ[1,N−1]) (48)

Therefore,

H
(
Ȳ[1,N−1]

)
≤ H

(
B[1,N−1]

)
= H
(
A[1,N−1]

)
≤

N−1∑
k=1

H (Ak) ≤ (N − 1) R. (49)

From (41), (47) and (49), we thus have

⟨W⟩ ≥ ∆F − kBT (N − 1) R. (50)

This ends the proof of the theorem.
2� �

Corollary 1: Consider the microscopic thermodynamic
system (4) that is in contact with a heat bath of
temperature T and is in a thermal equilibrium state at
time k = 0. If the system is controlled via the optimal
controller, a proper EMEP encoder & decoder and a
noiseless digital channel with capacity R{Mk}

N (JN − ĴN)
until time k = N, then the following inequality holds:

⟨W⟩ ≥ ∆F − kBT (N − 1) R{Mk}
N (JN − ĴN) (51)� �

Proof 2: Obvious from Definition 1, 2 and Theorem 1. 2

V. DISCUSSIONS

The inequality in Theorem 1 connects the second law with
channel capacity, and shows that as more channel capacity
is used, less work needs to be done on the system (in other
words, more work can be extracted from the system) given a
fixed free energy difference. We stress that Theorem 1 holds
whether or not the optimal controller or a proper encoder are
used in the control system.

On the other hand, Corollary 1 connects the second law
with channel capacity and control performance, which holds
in the case where the optimal controller and a proper encoder
are used in the control system. Figure 3 is a graph that shows
the relationship between the value of ΘN,{Mk} (or JN − ĴN)
and the capacity to realize that value when using a proper
encoder, with the horizontal axis be ΘN,{Mk} (or JN − ĴN) and
the vertical axis be R{Mk}

N (ΘN,{Mk}) (or R{Mk}
N (JN − ĴN)). The

value taken by R{Mk}
N (ΘN,{Mk}) (or R{Mk}

N (JN − ĴN)) is limited
to 0, ln 2, ln 3, . . . The black squares in the graph corresponds
to the cases where the optimal encoders are used. It can be
seen from the graph that the smaller the value of ΘN,{Mk} is,
i.e., the higher the control performance is, the more capacity
is needed to realize that control performance. Whereas, by
assuming that the equality in (51) holds, we can obtain the
relationship between R{Mk}

N (ΘN,{Mk}) and ⟨W⟩, whose graph is
shown in Fig. 4. It can be seen from the graph that given
a fixed value of ∆F, a smaller amount of work needs to be
done on the system, in other words, we can extract a larger
amount of work from the system and obtain higher control
performance if more channel capacity is used. In this way,
the relationship between the second law, the channel capacity
and the control performance is elucidated in the case where
the optimal controller and a proper encoder are used in the
control system.

Fujitani & Suzuki [7] discussed the case where there are
no communication constraints but the measurement output
Yk is mixed with sensor noise Vk, i.e., Yk = Xk + Vk. {Vk}
is assumed to be an independent and identically distributed
(i.i.d.) sequence of random variables with covariance KV .
The second law in this case is as follows [7]:

⟨W⟩ ≥ ∆F − kBT I
(
X̄[1,N−1]; Ȳ[1,N−1]

)
. (52)

Here, I
(
X̄[1,N−1]; Ȳ[1,N−1]

)
denotes the mutual information

between the microstates and the measurement outputs up
to time N − 1, which corresponds to the innovation pro-
cess. This result corresponds to inequality (41). In general,
I
(
X̄[1,N−1]; Ȳ[1,N−1]

)
satisfies the following inequality [15]:

I
(
X̄[1,N−1]; Ȳ[1,N−1]

)
= h

(
Ȳ[1,N]

)
− (N − 1) h (Vk)

≥ h
(
Ȳ[1,N]

)
− 1

2 (N − 1) ln
(
(2πe)d |KV |

)
, (53)

where h(·) denotes the differential entropy and d denotes
the dimension of Vk. If |KV | converges to 0, which means
that the measurement is accurate, we can conclude that
I
(
X̄[1,N−1]; Ȳ[1,N−1]

)
goes to∞ from the inequality above. This
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means that we can extract an infinite amount of work from
the system if the measurement is perfect.

For the case where the control is performed under commu-
nication constraints but there is no sensor noise, if the estima-
tion error measure ΘN,{Mk} converges to 0, R{Mk}

N (ΘN,{Mk}) goes
to ∞. Since ΘN,{Mk} → 0 implies perfect measurements, our
result is consistent with that obtained by Fujitani & Suzuki
[7].
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Fig. 3. Graph of R{Mk}
N (ΘN,{Mk}).
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Fig. 4. Relationship between R{Mk}
N (ΘN,{Mk}) and ⟨W⟩.

VI. CONCLUSIONS AND FUTURE WORKS

In this study, we considered a situation in which lin-
ear stochastic thermodynamic systems are controlled over
a noiseless digital channel, and derived the corresponding
second law, which includes a term representing the channel
capacity. Moreover, we concluded that given a fixed value
of free energy difference, we can extract a larger amount
of work from the system and obtain higher control control
performance if more channel capacity is used, in the case
where an optimal controller and a proper encoder are used
in the control system. We will generalize our results for
Hamiltonian classical systems and quantum systems.
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