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Abstract— Renewable energy generators give rise to large and
frequent supply-demand power imbalances in modern power
systems. In this volatile environment, secondary frequency
control (SFC) is becoming a critical functionality of real-time
operations and should be now carried out with higher economic
efficiency. Motivated by that, in this paper we design an optimal
frequency control (OFC) architecture that can be adopted
in lieu of the current Automatic Generation Control (AGC)
scheme enabling generators and demand response (DR) units to
jointly carry out optimal frequency regulation with minimum
generation cost and user disutility. The OFC algorithm can
improve the economic efficiency of the secondary control layer
by allowing the secondary control set-points to converge online
to their optimal values. Interestingly, we show that the overall
system composed of the physical network and OFC algorithm
dynamics is passive. By leveraging this passivity property we
establish global asymptotic stability of the equilibrium of the
overall system. Our passivity-based methodology is scalable
and computationally efficient and can be used to establish
guarantees for the performance of a power network that adopts
the proposed OFC algorithm particularly attractive for large-
scale applications.

I. INTRODUCTION

Environmental concerns pertaining to carbon emissions are
the predominant drivers behind the increasing penetration of
renewable energy resources (RERs) in power systems. On the
downside, the highly variable and intermittent nature of these
resources induces frequent and severe power fluctuations in
the generation while at the same time, the overall reduced
system inertia due to the retirement of conventional units has
the potential to enhance the impact of these fluctuations on
frequency quality. These high-impact frequency disturbances
can greatly challenge both the security and reliability of
power systems. To this end, SFC, which is the primary means
for counterbalancing frequency disturbances, is expected to
be heavily deployed in the foreseeable future.

In modern power systems with high penetration of renew-
able energy resources (RERs), automatic generation control
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(AGC) would have to offset large power mismatches be-
tween supply and demand to effectively carry out frequency
regulation. For this reason, various experts argue that the
economic efficiency of this fast power balancing process
warrants now additional consideration and should not be
overlooked any more. The economic efficiency of the AGC
is dependent primarily on the way the area control error
(ACE) is disaggregated to generators in real-time. AGC
disaggregates the ACE to generators by employing a simple
rule that relies on participation factors [1]. Despite the
fact that these participation factors are designed from an
economics perspective, they are inadequate in effectively
ameliorating the economic efficiency at the secondary control
(SC) layer. This can be inferred from the fact that the partic-
ipation factors are updated every 5-15 mins, coincident with
Economic Dispatch (ED), whereas power grid conditions
deviate significantly from the nominal ones during the intra-
dispatch time intervals. Hence, as participation factors are
updated on a much slower timescale than the one dictating
the variations in system conditions, the AGC becomes highly
inefficient from an economics point of view [2]. This is
even more urgent, as the growing presence of DR units will
introduce additional time variations. Therefore a systematic
methodology for optimal secondary frequency control is
becoming highly necessary.

Related Work. In order to improve the economic effi-
ciency of the SC layer, recent work has aimed at breaking
the separation between fast frequency control and slow
optimization-based ED and combining the two together. In
[3], the authors proposed a decentralized control algorithm
that can result in frequency regulation with minimal gen-
eration cost and benchmarked it against a centralized OFC
algorithm. In [2], the authors probed the connection between
AGC and ED from an optimization point of view and devised
two modified AGC schemes with higher economic efficiency.
In [4], the authors introduced one fully decentralized and one
distributed frequency control algorithm both of which, can
jointly carry out frequency regulation and ED. In [5], the
authors proposed a modification in the current generation
control system in order to improve its overall economic
efficiency by incorporating terms that spring from the KKT
conditions of the OFC problem. In [6], the authors exam-
ined the stability and optimality properties of distributed
secondary frequency control schemes under general classes
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of generation and demand control dynamics. Finally, in [7],
the authors assessed the impact of communication network
failures on the performance of a consensus-based distributed
optimal frequency control scheme similar to the one in [4].

Contributions. A universal element of the optimization
methods in [3], [2], [4], [5], [6], [7] is the slow convergence
rate. In practice, this particular aspect can pose a hurdle
to realizing high economic efficiency through the proposed
OFC schemes. This can be justified by the fact that the
generation and demand power commands, under the pro-
posed OFC algorithms, converge to their optimal values at a
relatively slow rate compared to the fast frequency regulation
dynamics. To get around this shortcoming among others, we
make the following contributions: 1) We employ a variant of
Newton’s method (used in our previous work [8] and [9])
to design a real-time optimization algorithm for attaining
solution to the OFC problem online. Such method is best-
suited for the OFC problem due to its fast convergence rate.
Specifically, our proposed algorithm enables the generation
and DR power set-points to converge to their optimal values
significantly faster than with previously proposed first-order
methods, 2) We introduce an elegant methodology based on
passivity theory for proving in a compositional manner that
the overall system composed of the physical network and the
OFC algorithm is passive and has an asymptotically stable
equilibrium. Particularly attractive merits of our methodol-
ogy are its computational efficiency and thus scalability and
its flexibility for handling more general classes of system
dynamics.

The rest of the paper is organized in the following way.
Section II reviews basic power systems models and discusses
the current AGC. Sections III and IV embody the main
results of the paper. In particular, Section III states the
OFC problem formulation and presents the real-time OFC
algorithm. Section IV presents the compositional stability
analysis based on passivity theory. Finally, Section V con-
cludes the paper with some remarks.

II. MODELING AND BACKGROUND

A. Power System Model
Consider a power system comprised of n buses with its

physical topology modeled by a connected undirected graph
G = (N , E) where, N denotes the set of buses and E ⊆
N × N the set of transmission lines connecting the buses.
Concretely, a line connecting a bus i with a bus j is denoted
by (i, j) ∈ E . In our analysis, G is the set of generators and D
the set of demand response (DR) units. The set of generator
buses is described by NG and the set of load buses by NL
such that N , NG ∪ NL. We adopt a linearized DC power
flow model and make the following typical assumptions:
• the voltage magnitudes are fixed
• the resistances of the transmission lines are negligible,

i.e Rij = 0, ∀(i, j) ∈ E .
• the voltage angle differences are small
• the reactive power flows are neglected.

These assumptions are well-justified for power transmission
networks as corroborated by [1]. In view of them, the

linearized dynamics of the bus frequencies ωi and voltage
angles δi around their equilibria can be succinctly written
as:

Miω̇i = −Diωi +
∑
j∈Gi

(PM,j + PSt,j)−
∑
j∈Di

PD,j − PL,i

−
∑
j∈N

Tij(δi − δj), i ∈ NG (1)

Diδ̇i = −
∑
j∈Di

PD,j − PL,i −
∑
j∈N

Tij(δi − δj), i ∈ NL

(2)

δ̇i = ωi, i ∈ N (3)

Equations (1)-(3) describe the swing dynamics where Mi are
the inertias of the generators, Di the damping coefficients,
PM,j the power outputs of generators, PSt,j is the power
output of local storage devices, PD,j the power consumption
references for the DR units and PL,i the inflexible load. In
addition, the constants Tij are the transmission coefficients
which can be defined as Tij = (V ∗i V

∗
j )/Xij where Xij

is the reactance of the transmission line (i, j) and V ∗i , V
∗
j

are the voltage magnitudes at equilibrium. The variables
PM,j , PD,j , PL,i also denote deviations from the equilibrium.

Each generator is assumed to be equipped with a governor
controller. By adopting a first-order model for the combined
governor and prime-mover dynamics, the mechanical power
output of each generator can be expressed as:

ṖM,i = τ−1i (PG,i − PM,i −R−1i ωj), i ∈ G (4)

where ωj corresponds to the frequency of the bus that the
generator is connected to, τi is the time constant and PG,i
the power set-point for the generator.

B. Conventional Automatic Generation Control

Frequency regulation has been traditionally carried out
by the Automatic Generation Control (AGC) scheme whose
objective is to drive the frequency and tie line flows back
to their nominal values shortly after a power imbalance [1].
For this scope, the AGC uses the area control error (ACE)
which, for a particular area a, can be defined as:

ACE(a) = B(a)ω(a) +
∑

(i,k)∈T (a)
f

Pik −
∑

(k,i)∈T (a)
t

Pki (5)

where ω(a) corresponds to the average frequency of the
generator buses and Pik to the power flowing through the
tie line (i, k) ∈ T (a)

f from area a to other areas and Pki to
the power flowing through the line (k, i) ∈ T (a)

t to area a
from other adjacent areas. The constant B(a) refers to the
area’s frequency bias factor and is given by:

B(a) =
∑

i∈N (a)

Di +
∑
i∈G(a)

R−1i (6)

Practically speaking, the ACE reflects the aggregate power
mismatch between supply and demand in a given area. The
current AGC logic mandates that the integral of ACE is
transmitted to the all units that provide regulation scaled each
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time by a coefficient that is equal to the participation factor of
the particular unit. On the receiving end, each regulating unit
uses this information to compute its new power reference:

ṖG,i = −pfi · k ·ACE(a), i ∈ G(a) (7)

where k is a control gain. According to [1], the ISOs compute
the participation factors pfi through the formula:

pfi ,
[ ∑
j∈G(a)

(1/C ′′G,j(P
∗
G,j))

]−1(
1/C ′′G,i(P

∗
G,i)
)

(8)

where CG,i ∈ C2, i.e the cost functions are twice dif-
ferentiable. The term P ∗G,i corresponds to the more recent
dispatch. As the power system operating conditions during
the intra-dispatch intervals vary largely and rapidly the above
static AGC logic based on participation factors that are
updated every 5−15 mins leads to low economic efficiency.

III. PROBLEM FORMULATION AND OPTIMAL
FREQUENCY CONTROL ALGORITHM

A. Optimal Frequency Control Problem

Our aim here is to improve the economic efficiency
associated with the secondary control layer. To this end,
we seek to bring cost-optimality in the fast power balancing
process that is performed by this control layer. To carry out
this, we formulate the OFC problem as:

OFC

minimize
PG,PD

∑
i∈G

CG,i(PG,i)−
∑
i∈D

UD,i(PD,i) (9a)

subject to
∑
i∈G

PG,i −
∑
i∈D

PD,i = f(ω), (9b)

PG,i ≤ PG,i ≤ PG,i, i ∈ G, (9c)

PD,i ≤ PD,i ≤ PD,i i ∈ D (9d)

where CG,i(PG,i),−UD,i(PD,i) ∈ C2 and strictly convex.
These functions that appear in the objective function denote
the generation cost functions and users’ disutility functions,
respectively. Observe that, the objective function (9a) reflects
the negative of the Global Social Welfare. The constraint
given by (9b) is the power balance constraint where the
function f maps the average frequency deviations to the
grid’s real-time power mismatch between supply and demand
that has to be eliminated. Suitable choices for the function
f , are the negative of ACE or the integral of that. We
note that, f depends only on the average frequency as here
we only consider a single-area setting with no tie-lines.
In general, any methodology that seeks to solve the OFC
problem effectively has to guarantee that the generation and
consumption power increments converge to an equilibrium
(P ∗G, P

∗
D) which is also the optimal solution of the OFC

problem. In the sequel, we present a distributed Newton-
like OFC algorithm that can realize fast convergence to the
optimal point (P ∗G, P

∗
D), of course within a sufficiently small

neighborhood around the optimal solution. We note that exact
characterization of the convergence rate of the proposed
algorithm and comparison of that with the convergence rate

of other methods is beyond the scope of this work but an
interesting direction for future work.

B. Optimal Frequency Control Algorithm

We propose the following optimization algorithm for at-
taining solution to the OFC problem under the physical
dynamics (1)-(4):

ṖD = (−∇2UD)−1
[
∇UD +G>4 ω + q · 1 + q`D − quD

]
(10)

ṖG = (∇2C̃G)−1
[
−∇C̃G −R†PM − q · 1 + q`G − quG

]
(11)

q̇ =
(∑
i∈G

PG,i −
∑
i∈D

PD,i − f(ω)
)

(12)

q̇`D =
[
PD − PD

]+
q`D

, q̇uD =
[
PD − PD

]+
quD

(13)

q̇`G =
[
PG − PG

]+
q`G

, q̇uG =
[
PG − PG

]+
quG

(14)

where:

R† := diag(R1, R2, . . . , R|G|), G4 :=

[
G4G

G4L

]
(15)

G4(i, j) :=

{
1, if DR unit j lies at bus i
0, otherwise

and ∇C̃G(PG) := ∇CG(PG) − R†PG where C̃G is still
strictly convex. Further, [g]+µ : Rn 7→ v is a vector projection
operator whose output vector v is given by:

vi =

{
gi, µi > 0

max{0, gi}, µi = 0,
(16)

When the above real-time OFC algorithm is adopted the pri-
mal and dual variables are guaranteed to converge to the sad-
dle point (P ∗G, P

∗
D, q

∗, q`∗D , q
u∗
D , q`∗G , q

u∗
G ) of the Lagrangian

L(·) of the OFC problem where (P ∗G, P
∗
D) corresponds to

the optimal solution of the OFC problem. We note that, the
algorithm is applicable only in the case where the Hessian
matrices of the generation cost and utility functions are non-
singular. The convergence of the OFC algorithm will be
shown formally in the next section.

IV. STABILITY ANALYSIS USING PASSIVITY THEORY

In this section, our aim is twofold; firstly, to prove that
the overall system composed of the coupled physical network
dynamics (1) - (4) and OFC optimization algorithm dynamics
(10)-(14) is passive and secondly, by leveraging this passiv-
ity property to establish global asymptotic stability of the
equilibrium of the overall system. Before stating our main
results, we review some background from Passivity theory
to lay the necessary foundation.

A. Passivity Theory

We depart from the definition of a passive system [10].
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Definition 1 (Passive System, [10]). Consider the system:

ẋ = f(x, u), y = h(x, u) (17)

where f is locally Lipschitz, h is continuous, f(0, 0) = 0
and h(0, 0) = 0 . This system is passive if there exists a
continuous differentiable positive semidefinite function S(x)
called the storage function such that it holds:

uT y ≥ Ṡ =
∂S

∂x
f(x, u), ∀(x, u) (18)

Therefore, proving that a given system is passive heavily
relies on our ability to successfully choose a proper input-
output combination jointly with a positive semidefinite stor-
age function that satisfy (18). Depending on the complexity
of the system, this task can be extremely hard or even
impossible. On the bright side, there exist various theoretical
results that establish passivity of certain classes of dynamical
systems. A particular result that is applicable to the physical
system given by (1)-(4) is the following.

Proposition 1 ([11]). Consider the system described by:

Rẍ+Qẋ+ Px = u, y = rẋ (19)

where u ∈ Rn is the input, y ∈ Rn the output and x ∈ Rn
the state-variable. Let R, Q and P ∈ Rn×n be positive
definite matrices. Then, this system is passive.

Proposition 1 and Definition 1 stem from Passivity theory
and form the necessary background. With this, we are ready
to derive our results. We begin with the system composed of
the generator and load buses dynamics.

B. Passivity of the System of Generator and Load Buses

Before proceeding to show passivity of the system of
generator and load buses, we define the following vectors:

δ :=
[
δ>G δ>L

]>
(20)

δG :=
[
δG,1 δG,2 · · · δG,|NG|

]>
(21)

δL :=
[
δL,1 δL,2 · · · δL,|NL|

]>
(22)

ω :=
[
ω>G ω>L

]>
:=
[
δ̇>G δ̇>L

]>
(23)

PM :=
[
PM,1 PM,2 · · · PM,|G|

]>
(24)

PSt :=
[
PSt,1 PSt,2 · · · PSt,|G|

]>
(25)

PD :=
[
PD,1 PD,2 · · · PD,|D|

]>
(26)

PL :=
[
P>LG P>LL

]>
(27)

PLG :=
[
PL,1 PL,2 · · · PL,|NG|

]>
(28)

PLL :=
[
PL,|NG|+1 PL,|NG|+2 · · · PL,|NG|+|NL|

]>
(29)

M := diag(MG, 0, 0, · · · , 0︸ ︷︷ ︸
|NL|

) (30)

MG := diag(M1,M2, . . . ,M|NG|) (31)
D := diag(DG, DL) (32)

DG := diag(D1, D2, . . . , D|NG|) (33)
DL := diag(D|NG|+1, D|NG|+2, . . . , D|NG|+|NL|) (34)

G3 :=
[
G3(i, j)

]
where: (35)

G3(i, j) :=

{
1, if gen and storage j lies at bus i
0, otherwise

(36)

G5 :=
[
G5(i, j)

]
where: (37)

G5(i, j) :=

{
1, if load j lies at bus i
0, otherwise

(38)

T := {Tij} =:

[
TG
TL

]
: graph Laplacian (39)

The physical network can be expressed in compact form as:

Λ1 : Mδ̈ +Dδ̇ + Tδ = G3(PM + PSt)−G4PD −G5PL
(40)

Recall that Λ1 refers to the physical network which consists
of the coupled dynamics of the generator and load buses. We
establish passivity of Λ1 through the following proposition.

Proposition 2. The System Λ1 with input u1 = G3(PM +
PSt)−G4PD −G5PL and output y1 = ω is passive.

Proof. Let the state-space vector of Λ1 be defined as:

X1 :=
[
δ>G δ>L δ̇>G

]>
(41)

The power input flow into Λ1 can be computed as:

u>1 y1 =

([
MG O
O O

] [
δ̈G
δ̈L

]
+

[
DG O
O DL

] [
δ̇G
δ̇L

]
+T

[
δG
δL

])> [
δ̇G
δ̇L

]
= δ̈>GMGδ̇G + δ̇>GDGδ̇G + δ̇>LDLδ̇L +

[
δG
δL

]>
T

[
δ̇G
δ̇L

]
(42)

We construct a storage function S1(X1) for Λ1 as:

S1(X1) :=
1

2
X>1

[
T O
O MG

]
X1

=
1

2
δ̇>GMGδ̇G +

1

2

[
δG
δL

]>
T

[
δG
δL

]
, (43)

and compute its time derivative as:

Ṡ1(X1) = δ̈>GMGδ̇G +

[
δ̇G
δ̇L

]>
T

[
δG
δL

]
. (44)

By combining (42) and (44), we finally obtain the relation:

u>1 y1 = Ṡ1(X1) + ω> diag(DG, DL)ω ≥ Ṡ1(X1). (45)

From (45), we conclude that the system Λ1 is passive. With
that, we complete the proof. �

Notice that the physical system is made up of two sub-
systems, the subsystem of generator and load buses dynam-
ics and the subsystem of governor-prime mover dynamics.
Proposition 2 establishes passivity of the former subsystem.
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We move on to establish passivity of the latter.

C. Passivity of Governor- Prime Mover Model

The combined governor and prime mover dynamics can
be written succinctly in matrix form as:

Λ2 : ṖM = τ−1(PG − PM −R∗ω) (46)

y :=P †M := R†PM (47)

PG :=
[
PG,1 PG,2 · · · PG,|G|

]>
(48)

τ := diag(τ1, τ2, . . . , τ|G|) (49)

R∗ := (R†)−1G>3 (50)

Note that, the matrix G>3 maps the full frequency vector ω
to the vector ωG with its elements permuted. We establish
passivity of Λ2 through the following proposition.

Proposition 3. The System Λ2 with input u2 = (PG−R∗ω)

and output y2 = P †M is passive.

Proof. The power flow into Λ2 can be computed as:

u>2 y2 = (PG −R∗ω)>R†PM

= P>GR
†PM − ω>R∗>R†PM (51)

Let the state-vector X2 and the storage function S2(X2) be:

X2 := PM , S2(X2) :=
1

2
X>2 R†τX2, (52)

Time differentiation of S2 gives:

Ṡ2(X2) =
1

2
Ẋ>2 R†τX2 +

1

2
X>2 R†τ Ẋ2

= [τ−1(PG − PM −R∗ω)]>R†τPM

= P>GR
†PM − P>MR†PM − ω>R∗

>R†PM (53)

By combining (51), (53) and P>MR
†PM > 0 we obtain:

u>2 y2 = Ṡ2(X2) + P>MR
†PM ≥ Ṡ2(X2) (54)

Therefore, we deduce that Λ2 is output strictly passive. �

We continue to show passivity of the overall physical
network. Prior to that, we state the transfer function system
representations of Λ1 and Λ2 as:

Λ1 : ω = δ̇ = F1(s)(G3(PM + PSt)−G4PD −G5PL)
(55)

Λ2 : P †M = F2(s)(PG −R∗ω) (56)

F1(s) := s(s2M + sD + T )−1 (57)

F2(s) := R†(sI + τ−1)−1τ−1 = R†(sτ + I)−1 (58)

The utility of this description will become clear in the sequel.

D. Passivity of the Overall Physical Network

So far, we established that both the system of the generator
and load buses and the system of governors are passive when
considered decoupled. Next, we assemble these properties to
establish passivity of the overall coupled system through the
following lemma.

Lemma 1. The system constructed by the negative feed-
back connection of Λ1 and Λ2 is passive with input v =[
v>1 v>2

]>
and output y =

[
y>1 y>2

]>
given precisely by:

y1 :=ω (59)

u1 :=G3(PM + PSt)−G4PD −G5PL = R∗>y2 + v1
(60)

v1 :=G3PSt −G4PD −G5PL, y2 := R†PM = P †M (61)
u2 :=PG −R∗ω = v2 −R∗y1, v2 := PG (62)

Proof. The input flow into the overall system is:

y>v = y>1 v1 + y>2 v2 = y>1 u1 + y>2 u2

= Ṡ1 + Ṡ2 + ω> diag(DG, DL)ω + P>MR
†PM ≥ Ṡ1 + Ṡ2

(63)

The last inequality arises by combining Propositions 2 and
3. From that, we conclude that the overall physical system
Λ1 − Λ2 is passive with storage function S1 + S2. �

Interestingly, the overall physical system can be viewed
as the negative feedback connection of the systems Λ1 and
Λ2.

E. Passivity of Optimal Frequency Control System

Naturally, the next step is to show passivity of the OFC
system. This is carried out by exploiting the following result.

Proposition 4 ([12]). Consider the iteration algorithm:

v̇ = (−(∇2V (v))−1)(∇V (v) +R>p) (64)
p = f(s)(−Rv + b) (65)

which attains solution to the problem:

maximize
v

V (v) (66)

subject to : Rv − b = 0 (67)

V (v) ∈ C2and strictly concave, R : full row rank

Let f(s) be a positive real transfer function with a simple
pole at the origin. Then, the systems (64) and (65) are
passive with input and output pairs (R>p̂, v̂) and (−Rv̂, p̂),
respectively, where v̂ = v−v∗, p̂ = p−p∗, and (v∗, p∗) is the
equilibrium point of (64) and (65). Moreover, the equilibrium
(v∗, p∗) is globally asymptotically stable and corresponds to
the optimal solution of (66) - (67).

Armed with Proposition 4, we state the following result
for the OFC system (10)-(14).

Theorem 1. The OFC system described by:

Λ3 : ṖD = (−∇2UD)−1
[
∇UD + u3 + q · 1 + q`D − quD

]
(68)

Λ4 : ṖG = (∇2C̃G)−1
[
−∇C̃G + u4 − q · 1 + q`G − quG

]
(69)
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Λ5 : q̇ = −
(∑
i∈D

PD,i −
∑
i∈G

PG,i + f(ω)
)

(70)

Λ6 : q̇lD =
[
PD − PD

]+
q`D

, Λ7 : q̇uD =
[
PD − PD

]+
quD

(71)

Λ8 : q̇lG =
[
PG − PG

]+
q`G

, Λ9 : q̇uG =
[
PG − PG

]+
quG

(72)

is incrementally passive where
[
u>3 u>4 −f(ω)

]>
is the

input and
[
P>D P>G q

]>
is the output.

Physical system

OFC system

Λ1–Λ2

[
G3PSt − G4PD − G5PL

PG

]
[
−G5PL

O

]
[

ω

P †
M

]

Λ3–Λ10 PD

PG

q
p


 G>

4 ω

−P †
M

−G6ω
−G7ω


−

[−G4 O G>
6

G>
7

O I O O ][−G4 O G>
6

G>
7

O I O O ]
>

Fig. 1: Overall system as a negative feedback connection
of Λ1–Λ2 (Physical system) and Λ3–Λ10 (OFC system).

Realize that our proposed OFC system (10)-(14) can arise
from the system in Theorem 1 in the special case where
u3 = G>4 ω and u4 = −R†PM . Therefore, a corollary of
Theorem 1 is that the system (10)-(14) is passive. To carry
on, we define:

f(ω) :=G6ω, G6 :=
1

|NG|

[
1> 0>

]
(73)

Λ10 : ṗ = − ωG = −G7ω, G7 =
[
I O

]
. (74)

Below, we state our final theorem that establishes asymptotic
stability of the overall system.

Theorem 2. The overall system Λ1 − Λ10 composed of the
physical network Λ1 − Λ2 and the OFC system Λ3 − Λ10

with:

u3 = G>4 ω, u4 = −P †M , f(ω) = G6ω (75)

G3PSt = G>6 q +G>7 p (76)
v1 = G3PSt −G4PD −G5PL, v2 = PG, (77)

has a asymptotically stable equilibrium that satisfies:

ω∗G = O (78)

− Tδ∗ +G3P
∗
M −G4PD

∗ −G5PL +G>6 q
∗ = O (79)

P ∗M = P ∗G (80)

∇UD(PD
∗) + 1q∗ + q`∗D − qu∗D = O (81)

−∇CG(PG
∗)− 1q∗ + q`∗G − qu∗G = O (82)

1>PD
∗ − 1>PG

∗ +G6ω
∗ = 0. (83)

Moreover, the equilibrium (P ∗D, P ∗G, q∗, q•∗• , p∗) corresponds
to the optimal solution of the OFC problem.

In summary, we have proposed an OFC algorithm that
can result in optimal frequency regulation. We have proved
that the physical and the OFC subsystems are passive when
viewed decoupled. Lastly, by combining these properties we
have showed that these two subsystems give rise to a passive
overall system that has an asymptotically stable equilibrium.

V. CONCLUDING REMARKS

Power systems with high penetration of RERs experience
large frequency fluctuations. That calls for rethinking the
current practice of secondary frequency control (SFC) with
aim to improve its economic efficiency. With this in mind, in
this paper we propose an OFC system that enables generators
and DR units to carry out optimal frequency regulation
with minimum cost. Our control methodology realizes high
economic efficiency by allowing for online convergence of
the SFC set-points to their optimal values. We establish
guarantees for the dynamic performance of a power network
that adopts the proposed scheme through a scalable and
computationally efficient methodology based on passivity
theory.
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