

NecSys 2013, 25-26 September 2013, Koblenz, Germany

Optimal Multiple Controlling Nodes Problem for Multi-agent Systems via Alt-PageRank

Koji Tsumurao[†] and Hiroki Yamamoto THE UNIVERSITY OF TOKYO

The Aim of This Research

Systems: Large scaled multi-agent consensus systems (number of agents) $n \gg 1$) including a small number (κ) of agents given reference signals.

<u>Problem:</u> Find the optimal choice of a set of agents given the constant reference signals, attaining the fastest convergence rate to the equilibrium of the whole system.

Difficulty: The brute force searching the optimal set requires ${}_{n}C_{\kappa}$ times cal-

Problem: Find the set of controlled agents \mathcal{K} with which the slowest eigenvalue of $-\mathcal{L}_{\mathcal{K}}$ to be fastest.

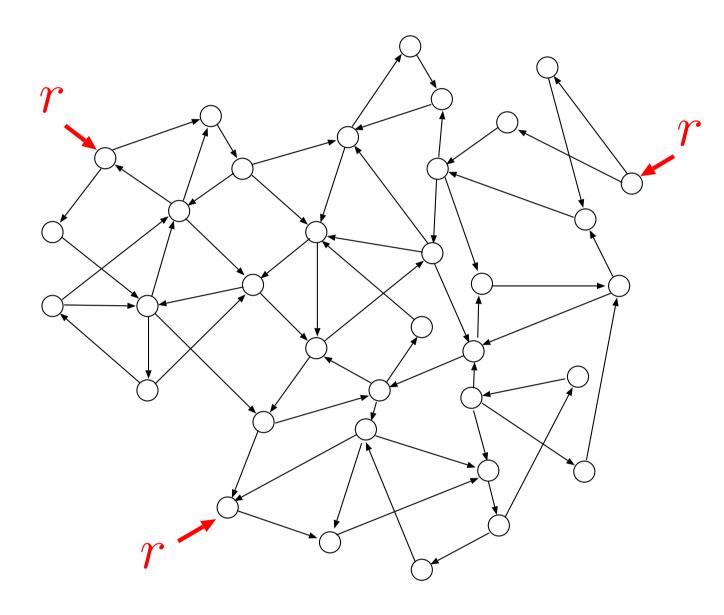
PageRank and Alt-PageRank

PageRank (Brin & Page 1998):

culations of eigenvalues of $n \times n$ matrices (order ${}_{n}C_{\kappa} \times n^{3}$, e.g., a case of $n = 10^3$, $\kappa = 3$ requires calculations of order 1.7×10^{17}).

Objective: Give a method to find the optimal set of the agents with small computation complexity.

Controlled Consensus Systems



Large scaled multi-Fig. 1: agent consensus system with

- $\mathcal{G} = (\mathcal{V}, \mathcal{E})$: directed graph
- \mathcal{V} : a set of nodes
- \mathcal{E} : a set of directed edges
- $(i, j) \in \mathcal{E}$: a directed edge from node $i \in \mathcal{V}$ to node $j \in \mathcal{V}$,
- $\mathcal{N}_i := \{j \in \mathcal{V} : (j, i) \in \mathcal{E}\}$: the neighbor set which sends information to *i*
- $\mathcal{B}_i := \{j \in \mathcal{V} : (i, j) \in \mathcal{E}\}$: the neighbor set which receives informa-

$$q_i = \sum_{j \in \mathcal{N}_i} \frac{q_j}{|\mathcal{B}_j|}, \quad \boldsymbol{q} = \begin{bmatrix} q_1 \ q_2 \cdots \ q_n \end{bmatrix}^\top, \quad \boldsymbol{q}^\top = \boldsymbol{q}^\top \Xi, \quad \Xi_{ij} = \begin{cases} \frac{1}{|\mathcal{B}_i|} & \text{if } j \in \mathcal{B}_i \\ 0 & \text{otherwise} \end{cases}$$

Alt-PageRank (Yamamoto & Tsumura 2011):

$$p_i = \sum_{j \in \mathcal{B}_i} \frac{p_j}{|\mathcal{N}_j|}, \quad \boldsymbol{p} = \begin{bmatrix} p_1 \ p_2 \cdots \ p_n \end{bmatrix}^\top, \quad \boldsymbol{p}^\top = \boldsymbol{p}^\top \Pi, \quad \Pi_{ij} = \begin{cases} \frac{1}{|\mathcal{N}_i|} & \text{if } j \in \mathcal{N}_i \\ 0 & \text{otherwise} \end{cases}$$

 $\mathbf{p}^{\mathsf{T}}\mathcal{L} = \mathbf{0}^{\mathsf{T}}, \quad \mathcal{L} = I - \Pi$

<u>**Remark:**</u> Calculation of Alt-PageRank p is order n^3 .

Main Results

Theorem: For a WCS, assume that $\epsilon > 0$ is sufficiently small and an integer $\kappa > 0$ is given. Then the convergence rate of WCS with a choice of node set \mathcal{K} satisfying $|\mathcal{K}| = \kappa$ becomes fastest when we choose κ nodes of the largest order in the corresponding Alt-PageRank p.

reference signals

tion from *i*

Weakly Controlled System (WCS):

normal agents:
$$\dot{x}_i = \frac{1}{|\mathcal{N}_i|} \sum_{j \in \mathcal{N}_i} (x_j - x_i), \quad \forall i \notin \mathcal{K}$$

controlled agents: $\dot{x}_k = \frac{1}{|\mathcal{N}_k|} \sum_{j \in \mathcal{N}_k} (x_j - x_k) + \epsilon (\mathbf{r} - x_k), \quad \forall k \in \mathcal{K}$

vector form :
$$\dot{\boldsymbol{x}} = -\mathcal{L}_{\mathcal{K}} \boldsymbol{x} + \epsilon r \sum_{k \in \mathcal{K}} \boldsymbol{e}_k, \quad \mathcal{L}_{\mathcal{K}} := \mathcal{L} + \epsilon \sum_{k \in \mathcal{K}} (\boldsymbol{e}_k \boldsymbol{e}_k^{\top})$$

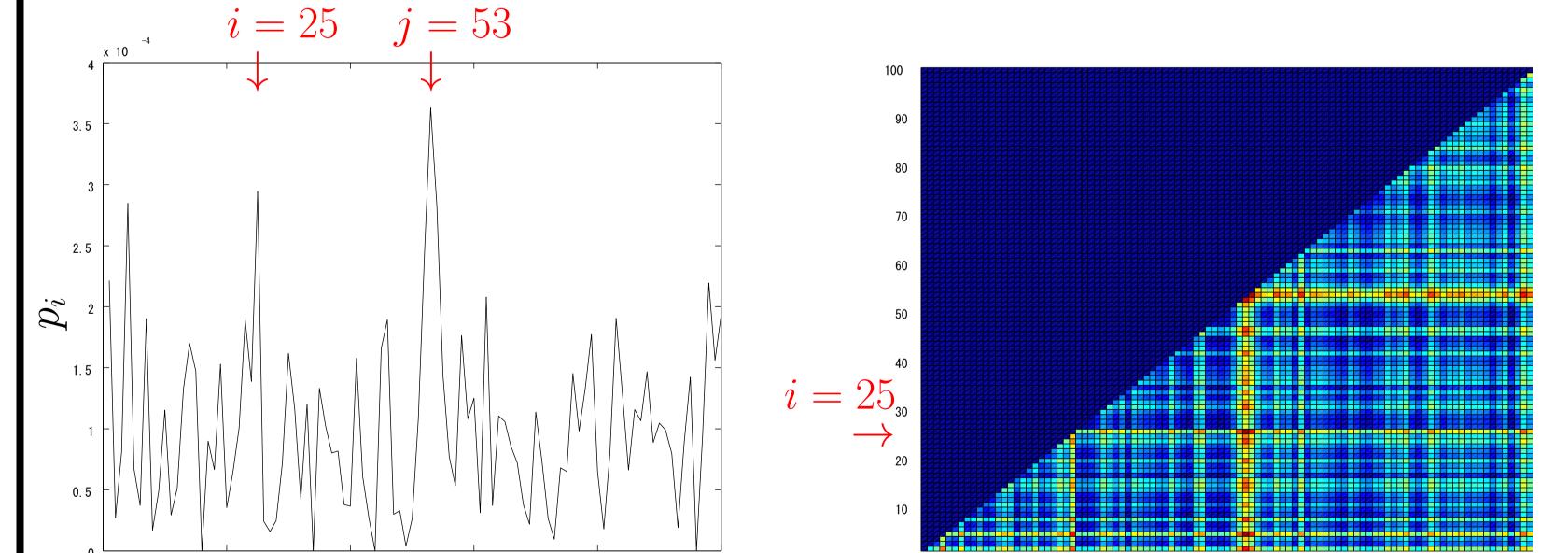
- *L*: the graph Laplacian of the "original" system without the references • r: reference signal
- \mathcal{K} ($\subseteq \mathcal{V}$): the set of indices of agents to which r is applied
- ϵ : a sufficiently small positive number
- e_k : k-th unit vector $e_k = [0 \cdots 0 \ 1 \ 0 \cdots 0]^T$

<u>Remark</u>: The result is given by showing the following:

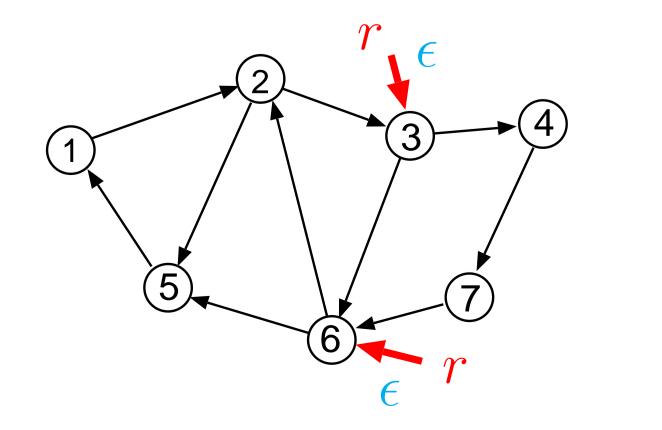
 $\underline{\lambda}(\mathcal{L}_{\mathcal{K}}) = \epsilon \sum_{k \in \mathcal{K}} p_k + \mathcal{O}(\epsilon^2)$

<u>Remark</u>: The computation complexity to solve the optimization via Alt-PageRank is $1/_nC_{\kappa}$ of that by the brute force searching (e.g., a case of $n = 10^3$, $\kappa = 3$ via Alt-PageRank requires calculations of order $n = 10^9$. Compare with the order 1.7×10^{17} by the brute force searching).

Numerical Simulations



convergence rate \Leftarrow the slowest eigenvalue of $-\mathcal{L}_{\mathcal{K}}$ \leftarrow choice of the controlled agent set \mathcal{K}



$$\mathcal{L}_{\{3,6\}} = \begin{bmatrix} 1 & 0 & 0 & 0 & -1 & 0 & 0 \\ -1/2 & 1 & 0 & 0 & 0 & -1/2 & 0 \\ 0 & -1 & 1 + \epsilon & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 & 0 & 0 \\ 0 & -1/2 & 0 & 0 & 1 & -1/2 & 0 \\ 0 & 0 & -1/2 & 0 & 0 & 1 + \epsilon & -1/2 \\ 0 & 0 & 0 & -1 & 0 & 0 & 1 \end{bmatrix}$$

Fig. 2: Example of WCS

index of i or j

Fig. 3: Values of p_i

j = 53Fig. 4: Values of $\underline{\lambda}(\mathcal{L}_{\mathcal{K}})$ for each choice of (i, j)

<u>**Remark</u></u>: Fig. 3 (n = 100, \kappa = 2 = |\mathcal{K}|) shows that the largest and the second</u>** p_i are p_{53} and p_{25} , respectively. On the other hand, Fig. 4 shows the values of $\underline{\lambda}(\mathcal{L}_{\mathcal{K}})$ for each choice of (i, j) for \mathcal{K} (a dark blue rectangular represents number 0 and a dark red rectangular represents a larger number). It also shows that the choice of (i, j) = (25, 53) gives the largest $\underline{\lambda}(\mathcal{L}_{\mathcal{K}})$ and it coincides with the above mentioned order of p_i .

tsumura@i.u-tokyo.ac.jp http://www.cyb.ipc.i.u-tokyo.ac.jp/members/tsumu/index-e.html