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Performance Competition in Cooperative Capturing by
Multi-Agent Systems

Koji TSUMURA ∗, Shinji HARA ∗, Keiichi SAKURAI ∗∗, and Tae-Hyoung KIM ∗∗∗

Abstract : In this paper, we deal with a problem to capture a target by linear multi-agent systems where the agents
behave autonomously, whereas the target escapes with a reasonable strategy. We consider two cases for the dynamics of
the agents and the target. First, for the simple dynamic case, we give a necessary and sufficient condition for the success
of the capturing. Then, we extend the results to the general dynamics case and give similar sufficient conditions. The
conditions clarify the performance competition between the target and the agents and we propose preferable strategies
for them. We also demonstrate the results by using numerical simulations.
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1. Introduction

In recent years, formation control composed of many agents
such as a flock of robots, vehicles, aircrafts, artificial satellites
or biological systems, has been actively investigated [1]–[15].
As a topic of it, cooperative pursuit of an object by a group
of agents with their local information has been also dis-
cussed [5],[7],[8],[12],[13]. In particular, a control method of
cyclic pursuit, which models the behavior of biological systems
such as a flock of birds or fishes, was proposed in [7],[8],[13].
This kind of research is motivated by engineering senses for ap-
plications and also by scientific interests to clarify the behavior
of biological systems. Examples of the applications are found
in [7],[8],[12].

In the research area of pursuit or capturing, Kim and
Sugie [16] proposed an effective cyclic pursuit of a target in
random moving by a group of agents. They also demonstrated
its efficiency by numerical simulations. However, a theoretical
condition for the success of pursuit is not given and the dy-
namics of the agents and the target is considerably simple. On
the other hand, Hara et al. [17] proposed a method to analyze
the stability of formation control composed of agents and a tar-
get with general dynamics. They considered a transformation
of the frequency variable of linear systems and gave a stability
condition with the eigenvalues of an adjacent matrix which rep-
resents the interchange of information between the agents and
the target.

The results in this research area of pursuit or capturing are in-
teresting, however, the assumption that the position of the target
is fixed or it moves regardless of the agents is artificial and it is

∗ Department of Information Physics and Computing, Graduate
School of Information Science and Technology, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

∗∗ Sompo Japan Insurance Inc., 1-26-1 Nishishinjuku, Shinjuku-
ku, Tokyo 160-8338, Japan

∗∗∗ School of Mechanical Engineering, Chung-Ang University, 221
Heukseok-dong, Dongjak-gu, Seoul 156-756, Korea
E-mail: tsumura@i.u-tokyo.ac.jp
(Received September 3, 2010)
(Revised May 3, 2011)

more realistic to suppose the target takes reasonable behavior
for escape. From this point of view, in this paper, we consider a
problem of capturing a target by a group agents where the tar-
get is supposed to escape along a reasonable strategy. Then, we
give conditions for the success of the capturing or the escape
with respect to their control performance indices. In particular,
we consider the problem in the following cases:

(i) simple dynamics of a target and agents,

(ii) general dynamics of a target and agents.

In (i), we deal with a case that the dynamics of the target and
the agents is a simple linear 1st order system. Then, we give
a necessary and sufficient condition for the capturing by em-
ploying the Gershgorin theorem with detailed analysis on the
coefficients of the characteristic polynomial. In (ii), we con-
sider more general dynamics of linear systems for the target
and the agents. For this purpose, we employ a notion of a trans-
formation of the frequency variable [17] and give conditions for
the capturing with the eigenvalues of an adjacent matrix and the
transformed stable/unstable region on the complex plane. Fur-
thermore, we discuss the performance competition between the
target and the agents for the capturing or the escape and propose
preferable strategies of behavior for the target or the agents.

A relevant research is [4], in which a formation control by
agents other than capturing is discussed. There is no target and
each agent has its own cost function for constructing a forma-
tion. The objective is to find a compromised solution for all the
agents by a game theoretic approach and a competition between
a target and agents as in this paper is not discussed.

Note that, in this paper, our focus is on clarifying the essence
of the competition in the capturing or the escape from the con-
trol theoretic viewpoint. Therefore, we intend to avoid detailed
modeling of the realistic behavior of the target or the agents.
We rather simplify the dynamics and try to derive clear condi-
tions in this paper.

This paper is organized as follows. In Section 2, we prepare
several notions and propositions used in the following of this
paper, and formulate the cooperative capturing by multi-agent
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systems. We give a condition for capturing in Section 3 with
a case of simple dynamics of the target and the agents. We
also discuss the performance competition and propose prefer-
able strategies for the target and the agents. In Section 4, we
extend the result to the case of more general dynamics. Finally,
we conclude the paper in Section 5.

Notation:
R: real numbers, R+: nonnegative real numbers, Rn: n-

dimensional real vectors, Rm×n: m × n-dimensional real matri-
ces, C: complex numbers, C+: the right half plane including the
imaginary axis, Cc

+: the complement ofC+, AT: the transpose of
a matrix A, σn,r: a rth order elementary symmetric polynomial
on k1, . . . , kn.

2. Preliminary and Formulation
In this section, at first, we introduce a standard stability of

linear systems and the related propositions used in this paper.
In general, for an nth order time invariant system:

ẋ = f (x), t ≥ 0, x(0) = x0, (1)

xe satisfying f (xe) = 0 is called an equilibrium point of (1).

Definition 2.1 Let xe be an equilibrium of (1). For arbitrary
positive number ε > 0, there exists a positive number δ(ε) > 0
and for any initial condition x0 satisfying ‖x0 − xe‖ ≤ δ(ε),

‖x(t) − xe‖ ≤ ε, ∀t ≥ 0, (2)

then, (1) is stable on xe.

Proposition 2.1 (e.g., see [18]) For an nth order linear time
invariant system:

ẋ = Ax, t ≥ 0, x(0) = x0, (3)

the following statements are equivalent:

(i) the system (3) is stable (on xe = 0).

(ii) the real part of the all eigenvalues of A are nonpositive and
the eigenvalues of which the real parts are zero are simple
roots of the minimal polynomial of A, if they exist.

Proposition 2.2 (Gershgorin Theorem [19]) For a complex
matrix A = (ai j) ∈ Cn×n, define discs on the complex plane
as

Di :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩s : |s − aii| ≤
n∑

j=1, j�i

|ai j|
⎫⎪⎪⎪⎬⎪⎪⎪⎭ , i = 1, 2, . . . , n. (4)

Then, the all eigenvalues of A are in the set of
⋃n

i=1 Di.

We next explain the stability of systems with a particular
structure:

G(s) = C

(
1

v(s)
I − A

)−1

B + D (5)

where v(s) is supposed to be a continuous and strictly proper
function of s. Let φ(s) := 1/v(s), then, we call a region which
is transformed from C+ by φ(s) as Ω+, its boundary ∂Ω+. The
complement of Ω+ is called Ωc

+.

Proposition 2.3 (e.g., see [20]) Let G(s) be a linear time in-
variant system. Then, the system G(s) = G(φ(s)) with a vari-
able transformation φ(s) is stable iff the all poles of G(s) except
for single poles on ∂Ω+ are in Ωc

+.

Hereafter, we formulate the problem of capturing. We con-
sider a subsystem Pt, which tries to escape, called target and
n subsystems P1, P2, . . . , Pn, which try to capture the target,
called agents. Their movements are supposed on a two dimen-
sional x–y plane. We denote their coordinates by

pi(t) =

[
xi(t)
yi(t)

]
∈ R2, pt(t) =

[
xt(t)
yt(t)

]
∈ R2, (6)

and their dynamics is given by

ṗi = fi(pi, ui), (7)

ṗt = ft(pt, ut), (8)

where fi(·) or ft(·) is an appropriate linear function such as the
equation of motion in Cartesian coordinate system, ui and ut are
the control inputs of an agent and the target.

In this paper, we define capturing as follows:

Definition 2.2 For any given ε > 0, if there exists a constant
δ > 0 and for any initial conditions pi(0), pt(0) such as ‖pi(0)−
{pt(0) + li}‖ < δ,
‖pi(t) − {pt(t) + li}‖ < ε, ∀t (9)

is satisfied, then we call the capturing is attained.

The point pt(t) + li can be regarded as the object for the agent
Pi where each parameter li := [lx,i ly,i]T is given in advance in
order to surround the target. When (9) is satisfied, the agents
Pi keep the relative positions around the target and succeed to
track the target Pt.

3. Cooperative Capturing: A Case of Simple Dynam-
ics

3.1 State Space Representation

In this section, we deal with a case of simple dynamics (7)
and (8) as:

ṗi = ui, (10)

ṗt = ut. (11)

On the other hand, the control law of the agents for capturing
is given below.

Control law of the agents:

ui = −ki{pi − (pt + li)}, (12)

where

ki :=

[
kx,i 0
0 ky,i

]
, kx,i > 0, ky,i > 0.

For the agents (10) with (12), a large ki implies that the agent is
sensitive for the move of the target and in general, the objective
(9) tends to be satisfied. In this sense, ki can be regarded as the
performance index of the agents.

Next, we define the escape strategy; the control law, of the
target as follows.
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Escape strategy of the target:

ut =

n∑
i=1

αikt(pt − pi), (13)

where

kt :=

[
kx,t 0
0 ky,t

]
, kx,t ≥ 0, ky,t ≥ 0, (14)

αi :=

[
αx,i 0
0 αy,i

]
, αx,i > 0, αy,i > 0,

αx,1 + αx,2 + · · · + αx,n = 1,

αy,1 + αy,2 + · · · + αy,n = 1.

The escape strategy (13) works such as there exist repulsions
between the target and the agents, and kt can be regarded as
the performance index of the target. The weights αi are tun-
ing parameters for the target. A large αi implies that the target
strongly escapes from the agent Pi. In this sense, the weights αi

assign the distribution ratios of the total performance kt against
each agent Pi.

Remark 3.1 In general, the capturing behavior of realistic bio-
logical systems is composed of many complex elements, there-
fore, the problem formulation given above is a considerably
simplified model. However, it describes a fundamental prin-
ciple of capturing or escape and the results in the following of
this paper clarify the performance competition in the coopera-
tive capturing and escape.

Remark 3.2 On the control inputs (12) and (13), we assume
that each agent can use the relative distance between its location
and the target’s location and on the other hand, the target can
use the relative distances between its location and the all agents.

As seen from (13), the dynamics on the axis x and y are inde-
pendent each other, therefore, in order to avoid the redundancy
on the discussion and the notations, in the following of this pa-
per, we basically refer to the x axis only and omit the subscript
x in the notations (e.g., kx,i → ki, lx,i → li, αx,i → αi).

We next prepare the augmented system of the whole systems
(10)–(13) in the following state space representation (pick up
x-axis only),

ẋ =Ax + Bl,

x =
[
xt x1 x2 · · · xn

]T
,

l =
[
0 l1 l2 · · · ln

]T
, (15)

where

A :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

kt −α1kt −α2kt · · · −αnkt

k1 −k1 O
k2 −k2
...

. . .

kn O −kn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (16)

B :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

kt 0 0 · · · 0
0 k1 O
0 k2
...

. . .

0 O kn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The block diagram of the whole system is given in Fig. 1.

Fig. 1 The block diagram of system (15): a case of simple dynamics.

3.2 A Condition for Capturing: A Case of Simple Dynam-
ics

We get the following result:

Theorem 3.1 In the system (15) composed of a target Pt and n
agents Pi, a necessary and sufficient condition for the capturing
is

kt

n∑
i=1

αi

ki
< 1. (17)

The proof is given in Section 3.4.
The condition (17) gives us insight on performance competi-

tion between the agents and the target and the preferable strate-
gies for them are explained as follows:

Performance as a group
The condition (17) can be deformed into

kt <

⎛⎜⎜⎜⎜⎜⎝
n∑

i=1

αi

ki

⎞⎟⎟⎟⎟⎟⎠
−1

. (18)

The right hand side is the weighted harmonic mean of ki and it
represents the performance of the agents as a whole.

The strategy for the agents
In general, according to the relationship between the

weighted harmonic mean and the arithmetical mean,(∑n
i=1

αi

ki

)−1
is bounded by

⎛⎜⎜⎜⎜⎜⎝
n∑

i=1

αi

ki

⎞⎟⎟⎟⎟⎟⎠
−1

≤
n∑

i=1

αiki,

and the equality is held at k1 = k2 = · · · = kn =: k. Therefore,
when αi are fixed and

∑n
i=1 αiki is constant, k1 = k2 = · · · =

kn = k is the best strategy for the agents regardless of αi. This
implies the agents should always form a “homogeneous” group
whether they know the control strategy αi of the target or not.
Moreover, when k1 = k2 = · · · = kn = k, (17) or (18) becomes

kt < k (19)

and the condition for the capture or the escape is a simple com-
parison between their individual performances kt and k.

The strategy for the target
Suppose that αi is a tuning parameter for the target. When

the agents do not choose the strategy mentioned above and the
target knows the order k1 > k2 > · · · > kn, then α1 < α2 < · · · <
αn is a preferable setting of the weights for the target in order
to decrease the right hand side of (18) under the limited control
input. This implies that setting a large weight αi corresponding
to the small ki, i.e. a weak agent, and strong escape from it, is a
preferable strategy for the target. On the other hand, when the
agents choose the strategy k1 = k2 = · · · = kn = k, then there is
no difference of the choice αi for decreasing the right hand side
of (18) and (18) results in (19).
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Remark 3.3 Theorem 3.1 states only a fundamental fact on the
competition of the feedback gains and we intend to show that
the result has many usages such as discussed after Theorem 3.1.
Some cases of the assumptions and the resultant conditions for
capturing are summarized as follows:

(i) Suppose that the agents do not necessarily choose the best
strategy and both of the agents and the target do not know
the parameter settings of the opponents each other, then
the condition for capturing is (18).

(ii) Suppose that the agents do not necessarily choose the best
strategy and only the target knows the parameter setting
of the agents k1 > k2 > · · · > kn, then the condition for
capturing is (18) and a preferable setting of αi is α1 <

α2 < · · · < αn.

(iii) Suppose that the agents choose the best strategy ki = k, ∀i
under a condition of a constant

∑n
i=1 αiki, then the condi-

tion for capturing results in (19) whether the target knows
this strategy of the opponent or not.

More exact game theoretic discussion is beyond the current ob-
jective of this paper and left for future work.

3.3 Numerical Simulation I

We show numerical simulations to demonstrate the results.
Let n = 4 and

k1 =

[
1.5 0
0 1.5

]
, k2 =

[
2.5 0
0 2.5

]

k3 =

[
3.5 0
0 3.5

]
, k4 =

[
4.5 0
0 4.5

]

l1 =

[
1
1

]
, l2 =

[ −1
1

]

l3 =

[ −1
−1

]
, l4 =

[
1
−1

]

p1(0) =

[
7
7

]
, p2(0) =

[ −7
7

]

p3(0) =

[ −7
−7

]
, p4(0) =

[
7
−7

]
. (20)

We also set kt and the weights αi as

kt =

[
2.0 0
0 2.0

]
, (21)

α1 =

[
0.2 0
0 0.2

]
, α2 =

[
0.3 0
0 0.3

]
,

α3 =

[
0.2 0
0 0.2

]
, α4 =

[
0.3 0
0 0.3

]
. (22)

Note that the weights are normalized as
∑
αi = I. Then,

kx,t

4∑
i=1

αx,i

kx,i
= ky,t

4∑
i=1

αy,i

ky,i
= 0.7343 < 1, (23)

therefore, the condition (17) for capturing is attained on x-axis
and y-axis, simultaneously. Figure 2 shows the loci of the
agents Pi (i = 1, 2, 3, 4) and the target Pt, and it is known
that actually the capturing is attained.

Fig. 2 The loci of the agents Pi (i = 1, 2, 3, 4, marked by ‘◦’) and the
target Pt (marked by ‘+’) (a case of capture).

Next, since the performance k1 of the agent P1 is the weakest
among the agents, tune the weights αi by

α1 =

[
0.5 0
0 0.5

]
, α2 =

[
0.3 0
0 0.3

]
,

α3 =

[
0.15 0

0 0.15

]
, α4 =

[
0.05 0

0 0.05

]
, (24)

whereas keep
∑
αi = I. This means the target escapes from the

weakest agent P1 strongly. In this case,

kx,t

4∑
i=1

αx,i

kx,i
= ky,t

4∑
i=1

αy,i

ky,i
= 1.0146 > 1 (25)

and the condition (17) is not satisfied. Actually, Fig. 3 shows
that the capturing fails and the target succeeds to escape.

Fig. 3 The loci of the agents Pi (i = 1, 2, 3, 4, marked by ‘◦’) and the
target Pt (marked by ‘+’) (a case of escape).

The above two cases demonstrate that the tuning of the
weights αi is important for the target to escape.

3.4 Proof of Theorem 3.1

We check the location of the eigenvalues of A with respect to
kt(≥ 0) for a fixed ki(> 0).

From the Gershgorin Theorem (Proposition 2.2), the all
eigenvalues of A are located in the region of the union of a
disc centered at (kt, 0) with radius kt (call Dt hereafter) and
discs centered at (−ki, 0) with radius ki (i = 1, 2, · · · , n) (call
Di hereafter) in the complex plane. This implies that the all
discs touch the imaginary axis only at the origin for any kt and
ki, and the discs Di exist in the left half plane for any ki > 0.
When kt = 0, the disc Dt becomes a point located at the ori-
gin, therefore, the all discs exist in the closed left half plane.
Next, when kt > 0, only the disc Dt extends in the right half
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plane which still touch the imaginary axis only at the origin
(see Fig. 4).

Fig. 4 The location of the Gershgorin discs in the case kt > 0 and ki > 0.

From the above facts, we show the condition (17) for the sta-
bility with the following steps:

(i) The eigenvalues of A are continuous functions of kt (their
loci on the complex plane with respect to kt are continu-
ous).

(ii) When the eigenvalues move from the left half plane to the
right half plane (and vice versa) by the continuous change
of kt, they necessarily pass through the origin.

(iii) The matrix A always has an eigenvalue at the origin.

(iv) The other eigenvalues should be asymptotically stable for
(9).

(v) When kt = 0, the other eigenvalues exist in the open left
half plane, that is, capturing is attained.

(vi) The value of kt which satisfies the condition that one of the
other eigenvalues referred in (v) is located on the origin is
unique (call k̄t). Moreover, when 0 ≤ kt < k̄t, the eigen-
values referred in (v) are asymptotically stable, otherwise
they are marginally stable or unstable.

The statement (i) is obvious from the definition of A. With
(i), the statement (ii) is also obvious since the Gershgorin discs
Dt and Di touch the imaginary axis only at the origin from
Proposition 2.2.

Next, by using a nonsingular matrix

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0
1 1 O
1 1
...

. . .

1 O 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

transform the state variable x in (15) as

x =T z,

z :=
[

zt z1 z2 · · · zn

]T
, (26)

then,

ż = T−1AT z + T−1Bl =: Ãz + T−1Bl,

where Ã is given by

Ã = T−1AT

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −w1 −w2 · · · −wn

0 −k1 + w1 w2 · · · wn

0 w1 −k2 + w2
. . .

...
...

...
. . .

. . . wn

0 w1 · · · wn−1 −kn + wn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(27)

and

wi := αikt, i = 1, 2, · · · , n. (28)

From this, (iii) is given. The statement (iv) is from (iii) and
Proposition 2.1.

Next, denote the 2-2 block matrix of Ã as

Ã22 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−k1 + w1 w2 · · · wn

w1 −k2 + w2
. . .

...
...

. . .
. . . wn

w1 · · · wn−1 −kn + wn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(29)

Let ψ(s) be the characteristic polynomial of Ã22, then a direct
calculation gives

ψ(s) = det(sI − Ã22)

=

n∏
i=1

(s + ki) −
n∑

i=1

⎛⎜⎜⎜⎜⎜⎜⎝wi

n∏
j=1, j�i

(s + k j)

⎞⎟⎟⎟⎟⎟⎟⎠
=: sn + cn−1sn−1 + cn−2sn−2 + · · · + c1s + c0, (30)

where the coefficient c0 is described by

c0 =σn,n −
n∑

i=1

(σn,n−1 − kiσn,n−2 + k2
i σn,n−3−

· · · + (−1)n−1kn−1
i )wi

with elementary symmetric polynomials σn, j on k1–kn defined
in Definition A.1. From the definition of σn, j, it is obvious that
σn, j > 0 for all j.

When kt = 0,

ψ(0) = σn,n > 0. (31)

This implies Ã22 does not have an eigenvalue at origin when
kt = 0. However, recall that when kt = 0, the all Gershgorin
discs exist in the close left half plane and they only touch the
imaginary axis at the origin. Therefore, (v) is concluded.

Finally, we show (vi). At first, note that the signatures of wi

and kt are same for all i from the definition of wi. On the other
hand, we can also show that

σn,p−1 − kiσn,p−2 + k2
i σn,p−3 − · · · + (−1)p−1kp−1

i > 0

for any p and i by Lemma A.1. This implies c0 is a uniformly
decreasing number with respect to kt for fixed ki. Therefore,

k̄t s.t. ψ(0) = c0 = 0 (32)

is unique. From the fact (i), (ii) and (v), when 0 ≤ kt < k̄t,
ψ(0) = c0 > 0 and Ã22 is asymptotically stable. Contrary, when
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kt ≥ k̄t, ψ(0) = c0 ≤ 0 and Ã22 is unstable or marginaly stable.
This concludes (vi).

From (iii), (iv) and (vi), 0 ≤ kt < k̄t or equivalently ψ(0) =
c0 > 0 is the necessary and sufficient condition for the captur-
ing.

Finally, we describe the condition

ψ(0) = c0 > 0 (33)

by using kt, ki and αi. A direct calculation gives:

(33)⇐⇒σn,n −
n∑

i=1

(σn,n−1 − kiσn,n−2 + k2
i σn,n−3−

· · · + (−1)n−1kn−1
i )wi > 0 (34)

⇐⇒
n∏

i=1

ki − w1

n∏
i=2

ki − w2

n∏
i=1
i�2

ki − w3

n∏
i=1
i�3

ki−

· · · − wn

n−1∏
i=1

ki > 0 (35)

⇐⇒w1

n∏
i=2

ki + w2

n∏
i=1
i�2

ki + w3

n∏
i=1
i�3

ki+

· · · + wn

n−1∏
i=1

ki <

n∏
i=1

ki (36)

⇐⇒
n∑

i=1

wi

ki
= kt

n∑
i=1

αi

ki
< 1. (37)

This concludes the statement of the theorem.

4. Cooperative Capturing: The Case of General Dy-
namics

In Section 3, we deal with a simple case of the dynamics
of the target and the agents. In order to correspond to more
realistic situations, we extend the class in this section. Note
that we consider the case:

αi =
1
n
, ∀i, (38)

in this section for simplifying the problem.

4.1 State Space Representation with a Transformed Fre-
quency Variable

In this section, we consider the following dynamics for the
agents and the target.

pi =

[
v(s) 0

0 v(s)

]
ui (39)

pt =

[
v(s) 0

0 v(s)

]
ut (40)

The control inputs of the agents and the target are the same of
(12) and (13), respectively.

We also describe the dynamics on x-axis only such as in Sec-
tion 3, then we get the following equation corresponding to
(15):

1
v(s)

x =Ax + Bl,

x =
[

xt x1 x2 · · · xn

]T
,

l =
[

0 l1 l2 · · · ln
]T
, (41)

where A is defined in (16) with αi =
1
n , ∀i. The corresponding

block diagram is given in Fig. 5.

Fig. 5 The block diagram of system (41): the case of general dynamics.

The transfer function from l to x is given by

G(s) =

(
1

v(s)
I − A

)−1

B. (42)

By using the stability analysis explained in Section 2, (42) can
be regarded as a linear system with a transformed frequency
variable φ(s) := 1/v(s). In the following, we give conditions
for capturing when v(s) is in some classes defined below:

Definition 4.1 Denote the set of φ(s) which satisfies that Ω+
(:= φ(C+)) does not contain φ ∈ (−μ, 0], μ > 0 on the real axis
by Φμ. Also define

Vμ :=

{
v(s) =

1
φ(s)

, φ(s) ∈ Φμ, v(s) : strictly proper

}
.

(43)

For example,

v(s) =
1

s(s + a)
, a > 0 (44)

is inV∞. This is the typical case that the dynamics of the agents
and the target is a second order system with a mass point and
a damper. The complement region Ωc

+ of Ω+ when a = 1.5 is
described as the shaded area in Fig. 6.

Fig. 6 The region Ωc
+ in the case v(s) =

1
s(s + 1.5)

.

The boundary of the region Ωc
+ in Fig. 6 is given by

φ( jω) = jω( jω + a) = −ω2 + jωa (45)

and the set Ωc
+ can be regarded as a transformed stable region

for the eigenvalues of A in (42). It is also shown that Ω+ does
not contain (−∞, 0] on the real axis.

On the other hand,

v(s) =
1
s
· 1

ms2 + ds + λ
, m, d, λ > 0 (46)
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is in Vμ, where 0 < μ < ∞. This is another typical case of
the dynamics with an integrater, a mass point, a spring and a
damper. In this case, the complement regionΩc

+ ofΩ+ at m = 1,
d = 1.2, λ = 2.2 is described as the shaded area in Fig. 7. It is
also shown that Ω+ does not contain (−μ, 0] � (−2.7, 0] on the
real axis.

Fig. 7 The region Ωc
+ in the case v(s) =

1
s(s2 + 1.2s + 2.2)

.

Remark 4.1 As in the above examples, μ can be easily calcu-
lated in a simple case of v(s), i.e., φ( jω) gets across the real
axis once or not. In general cases such as φ( jω) acrosses the
real axis several times, it is not trivial to find μ, however a com-
bination of several matrix inequalities can give μ numerically
by employing a method in [21].

4.2 A Condition for Capturing: The Case of General Dy-
namics

Now, we give a condition for capturing:

Theorem 4.1 Assume

v(s) ∈ Vμ, (47)

then, the following hold:

(i) When 0 < μ < ∞, a sufficient condition that the system
(41) attains capturing is

kt

n

n∑
i=1

1
ki
< 1 (48)

and

−μ < −2kmax, (49)

where kmax := max {k1, k2, · · · , kn}.
(ii) When μ = ∞, a necessary and sufficient condition that the

system (41) attains capturing is (48).

Proof Proof of (i): From Proposition 2.3, a condition that the
all eigenvalues except for a zero eigenvalue of A are in Ωc

+ and
the system attains capturing (9) are equivalent. On the other
hand, Theorem 3.1 gives a necessary and sufficient condition
(17) for that the all eigenvalues except for a zero eigenvalue of
A are in the open left half plane. Note that when αi =

1
n , ∀i, the

matrix Ã22 given in (29) is symmetry and the all eigenvalues
of A are real. Therefore, their minimum is larger than or equal
to −2kmax from the Gershgorin theorem. On the other hand,

the unstable region Ω+ for v(s) ∈ Vμ does not contain φ ∈
(−μ, 0] on the real axis. Therefore, (48) and (49) imply the
all eigenvalues except a zero eigenvalue of A are in the stable
region Ωc

+. This concludes the statement.
Proof of (ii): In the case of v(s) ∈ V∞, the unstable regionΩ+

on the complex plane does not contain the negative part of the
real axis, therefore, the stability of the system (41) is equivalent
to (48). �

From Theorem 4.1 and 3.1, it is known that the capturing
conditions are identical for the first order system (10), (11) and
for the system (39) and (40) where v(s) ∈ V∞.

4.3 Numerical Simulation II

We show numerical simulations in a case of (44) with a =
0.9, that is, f (s) ∈ V∞, (20) and (21). Note that the weights are

αi =

[ 1
4 0
0 1

4

]
, ∀i. (50)

In this case, the necessary and sufficient condition (48) for cap-
turing in Theorem 4.1-(ii) is satisfied as

kx,t

4

4∑
i=1

1
kx,i
=

ky,t

4

4∑
i=1

1
ky,i
= 0.7873 < 1. (51)

Figure 8 shows the loci of the agents Pi (i = 1, 2, 3, 4) and the
target Pt. From the simulation, it is known that the capturing
succeeds.

Next, we set kt as

kt =

[
3 0
0 3

]
, (52)

Fig. 8 The loci of the agents Pi (i = 1, 2, 3, 4, marked by ‘◦’) and the
target Pt (marked by ‘+’) (a case of v(s) ∈ V∞ and success of
capture).

Fig. 9 The loci of the agents Pi (i = 1, 2, 3, 4, marked by ‘◦’) and the
target Pt (marked by ‘+’) (a case of v(s) ∈ V∞ and escape).
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then,

kx,t

4

4∑
i=1

1
kx,i
=

ky,t

4

4∑
i=1

1
ky,i
= 1.1810 > 1. (53)

This implies (48) is not satisfied. Figure 9 shows the numerical
simulation of the loci of the agents and the target in this case.
From the figure, it is known that the capturing fails.

5. Conclusion
In this paper, we considered a cooperative capturing problem

by multi-agent systems where the target escapes with a reason-
able strategy. We gave necessary and sufficient conditions or a
sufficient condition for the cases of simple and general dynam-
ics of the target and the agents. We furthermore discussed the
meaning of the condition with respect to the performance com-
petition between the target and the agents. In particular, we
explained that a reasonable strategy for the target is to escape
strongly from weak agents, and on the contrary, for the agents
it is reasonable to form a homogeneous group.
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Appendix
We give the definition of elementary symmetric polynomials

and the related lemmas.

Definition A.1 (elementary symmetric polynomial) For
given k1, k2, . . ., kn, consider the expansion of

∏n
i=1(x + ki) as

n∏
i=1

(x + ki)

= xn + σn,1xn−1 + σn,2xn−2 + · · · + σn,n−1x + σn,n.

(A. 1)

Then, σn,r is called an elementary symmetric polynomial on k1,
k2, . . ., kn.

For example, when n = 3,

σ3,1 = k1 + k2 + k3,

σ3,2 = k1k2 + k2k3 + k3k1,

σ3,3 = k1k2k3.

Lemma A.1 For arbitrary p = 1, . . . , n and i = 1, . . . , n,

σn,p−1 − kiσn,p−2 + k2
i σn,p−3 − · · · + (−1)p−1kp−1

i > 0.
(A. 2)

Proof At first, the left hand side of the inequality can be de-
formed to

σn,p−1 − kiσn,p−2 + k2
i σn,p−3 − · · · + (−1)p−1kp−1

i

=σn,p−1 − ki(σn,p−2 − ki(σn,p−3−
· · · − ki(σn,2 − ki(σn,1 − ki)) · · · )).

The most inside term of the brackets is positive as
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σn,1 − ki

= k1 + k2 + · · · + ki−1 + ki+1 + · · · + kn

> 0 (... ki > 0, ∀i).

Next,

σn,2 − ki(σn,1 − ki)

= k1k2 + k1k3 + · · · k1ki−1 + k1ki+1 + · · · k1kn

+ k2k3 + k2k4 + · · · k2ki−1 + k2ki+1 + · · · k2kn

...

>0.

Repeat this and get

σn,p−1 − ki(σn,p−2 − ki(σn,p−3−
· · · − ki(σn,2 − ki(σn,1 − ki)) · · · ))
=σn,p−1 except for the terms which contains ki

>0.

This concludes the statement. �
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