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Abstract: In this paper, we deal with a distributed feedback control of quantum networks called
a quantum consensus algorithm (QCA) with local quantum observation and feedback proposed
by Kamon & Ohki (2013, 2014) and prove strictly that QCA makes quantum states converge to a
quantum state called symmetric state consensus (SSC) with probability one from arbitrary initial
states keeping purity. The difficulty of the proof is from that the objective system is stochastic
and non-linear, and we solve it by employing the stochastic Lyapunov stability analysis. We also
show that QCA can generate a desirable W-state, which is known as an important entangled
quantum state and utilized for many applications of quantum information technology.
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1. INTRODUCTION

Quantum control has been actively investigated to over-
come such problems as the generation or preservation of
quantum bits (qubits) under noisy environments Wiseman
& Milburn (2009). From the establishment of quantum
filtering theory Belavkin (1992), research about quantum
control has advanced and contributed to broad areas of
quantum information technologies Mirrahimi & van Han-
del (2007). However, as is the case with classical systems, it
is quite difficult to control quantum bits when the number
of bits is large because of the increasing complexity of
instrument networks (e.g., see Yokoyama et al. (2013) for
the case of optical systems). Then, a distributed operation
called quantum consensus, which is one of the distributed
quantum information applications, is a promising idea to
generate quantum states of large-scale quantum systems.

Mazzarella et al. (2013) have developed a framework of
quantum consensus as the extension of classical consensus
problems. They have defined several types of quantum
consensus states, derived their hierarchical relationship
and proposed a quantum version of gossip algorithm
which asymptotically generates a consensus state called
symmetric state consensus (SSC).

Their algorithm can be regarded as an autonomous system
like classical consensus systems and it contains no feedback
input operation depending on the current quantum states.
Then, in fact, Kamon & Ohki (2013) proved that the
algorithm loses the purity of quantum states during the
consensus operations. Purity is an important quantity for
application to quantum information technology and above
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fact is not desirable for the purpose of generating useful
quantum states. The similar approaches for consensus with
no feedback control (e.g. Sepulchre et al. (2010); Shi et al.
(2015, 2016)) also have this issue.

Motivated by the above fact, Kamon & Ohki (2013) and
Kamon & Ohki (2014) have proposed a hybrid type of the
distributed consensus algorithm and a distributed feed-
back with quantum state observation; projective measure-
ments, in order to realize SSC and high purity simulta-
neously. They have shown the efficiency of their control
scheme by numerical simulations and further expected
that their algorithm realizes artificial bosonization or ar-
tificial fermionization.

The convergence of their algorithm, however, has not been
proved and left for as an open problem. Then, in this
paper, we tackle with this open problem and solve it
completely. For more details, we modify the algorithm
proposed by Kamon & Ohki (2013, 2014) and give a strict
proof of the convergence to SSC from arbitrary initial
states keeping purity. The difficulty of the proof is from
that the dynamics is governed by two types of stochastic
processes; (1) probabilistic selection of local subsystems
among the whole networked quantum system, (2) feedback
control action depending on the probabilistic quantum ob-
servation results, projective measurements, of the selected
local subsystems. Therefore, the feedback control dynam-
ics depends on the state-depending complicated combina-
tions of the above stochastic processes and, as a result,
it is represented as “a stochastic non-linear equation.” In
fact, a simple idea of applying the Kraus map discussed
in Mazzarella et al. (2013) for their “deterministic linear
autonomous systems” is not applicable in our case and its
analysis requires strict dealing with the dynamics and the
combinations as discussed in our paper.
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To overcome the complexity of stochastic non-linear sys-
tems, we employ the stochastic version of the Lyapunov
stability theory, which is a well known method in quantum
control Mirrahimi & van Handel (2007). Moreover, we also
show that the proposed algorithm can generate a W-state,
which cannot be obtained by the algorithm of Mazzarella
et al. because the purity of the W-state is maximum among
all the quantum states. It is well known that the W-state
is one of the significant quantum entangled states and
utilized in wide areas such as quantum memory. This is an
important application of quantum consensus generation.

The similar research on the quantum consensus with
feedback control is in Mazzarella et al. (2015), where the
target state is restricted to an eigenstate and entangled
states are not realized. Ticozzi (2016) recently reports
the similar result of this paper in a deterministic way,
however it is unclear whether its assumed deterministic
operation can be realized by a feedback strategy which
essentially depends on the probabilistic observation output
by projective measurements.

This paper is organized as follows. In Section 2, we
introduce some mathematical preliminaries and define
the problem setting. In Section 3, we show the main
results of this paper and prove them. In Section 4, we
show numerical examples to confirm the efficiency of the
proposed algorithm. Finally, we conclude this paper in
Section 5.

Note that we omit many of the proofs for lemmas in this
paper from the page limitation.

2. FORMULATION

2.1 Convergence of Stochastic System

Let {xn}n∈{0}∪N ⊂ Cm be a sequence of random variables.
Then, we introduce definitions of convergence as follows:

Definition 1. A sequence {xn} is said to converge to x̃ in
probability if lim

n→∞P{|xn − x̃| ≥ �} = 0 for any � > 0.

Definition 2. A sequence {xn} is said to converge to x̃
with probability one (w.p.1) if P{ lim

t→∞xn = x̃} = 1.

It is known that convergence w.p.1 is stronger than con-
vergence in probability.

In this paper, we deal with a quantum control system
which makes a quantum state converge to a target state
in the above probabilistic sense. In order to show such
convergence, we employ the following stochastic Lyapunov
stability theorem.

Definition 3. A set C is called an invariant set if any initial
state of a dynamical system belonging to C never leaves C.
Proposition 1. (Kushner (1971)) Let {xn}n∈{0}∪N ⊂ Cm

be a state of some dynamical system and a Markov process.
Assume that there exist bounded non-negative functions
V (x) and k(x) which satisfy

E{V (xn)|xn−1} − V (xn−1) = −k(xn−1) (1)

for all n ∈ N. Then, k(xn) → 0 (n → ∞) for almost all the
paths. In addition, let M = {x ∈ Cm | k(x) = 0}, and let

M̃ be the largest invariant set of M, then xn converges to
M̃ in probability.

In some cases, convergence in probability implies conver-
gence w.p.1.

2.2 Quantum State and Quantum Consensus State

In this paper, we deal with a multipartite quantum system
composed of N isomorphic subsystems, labeled with in-
dices i = 1, 2, . . . , N , with associated Hilbert space HN :=
H1×H2×· · ·×HN , with dim(Hi) = D for all i and D is an
integer satisfying D ≥ 2. Let {|di�}di∈{0,1,...,D−1} be a set

of basis vectors ofHi, then the basis vectors ofHN are rep-
resented by {|d1�⊗|d2�⊗· · ·⊗|dN �}∀i,di∈{0,1,...,D−1}. Here-
after, we abbreviate |d1�⊗|d2�⊗· · ·⊗|dN� to |d1d2 · · · dN �.
In addition, we regard Hi as CD and the basis vector |di�
as (0 0 · · · 0 1 0 0 · · · 0)�, i.e., the di+1-th element is one
and the others are zero, where � is a transpose operator.

Remark 1. Our main results are obtained in the case of
D = 2, while some of lemmas are also true in the general
case. So, we specify the condition D = 2 only if necessary
in the following.

Define B(n) as a set of matrices with dimension n × n.
Then a quantum state on HN is represented by a density
matrix in

D(DN ) := {ρ ∈ B(DN)| ρ = ρ† � 0, tr(ρ) = 1}, (2)

where † is the complex conjugate transpose operator, � 0
means that the matrix is semi-positive definite, and tr(·) is
an trace operator. A density matrix completely represents
a probability distribution of a quantum system.

In particular, if the rank of a density matrix is one, the
quantum state is called a pure state, while it is called a
mixed state if the rank is larger than one. A pure state ρ
is completely expressed by a state vector ψ as ρ = ψψ†,
which is an element of D�(DN ) := {ψ ∈ CDN | �ψ� = 1},
where � · � is 2-norm.

In this paper, we deal with a networked quantum sys-
tem and consider to realize a quantum consensus state,
called symmetric state consensus (SSC) introduced by
Mazzarella et al. (2015) as follows:

Definition 4. (Mazzarella et al. (2015)) Let π be a per-
mutation of integers 1, 2, . . . , N , and let Uπ ∈ B(DN)
be a permutation matrix satisfying Uπ(x1 ⊗ x2 ⊗ · · · ⊗
xN ) = xπ(1) ⊗ xπ(2) ⊗ · · · ⊗ xπ(N) for all {xn}Nn=1 ⊂ CD.

Then, a quantum state ρ ∈ D(DN ) is called in symmetric
state consensus (SSC) if UπρU

†
π = ρ holds with any π.

We also use the notation SSC to represent the set of all
the quantum states in symmetric state consensus.

2.3 Network Structure and Quasi-local Operation

Mazzarella et al. (2015) introduced a consensus algorithm
to realize SSC, however Kamon & Ohki (2013) proved that
it loses purity

tr(ρ2). (3)

Motivated by this fact, in the following of this section,
we introduce a networked quantum system composed of
several quantum subsystems with a hybrid type (Kamon
& Ohki (2013, 2014)) of a quantum consensus algorithm
(Mazzarella et al. (2015)) and feedback control with obser-
vations, that is, distributed quasi-local measurements and
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quasi-local feedback controls, in order to realize SSC and
high purity simultaneously.

The network structure is represented by a graph GN =
(VN , EN ), where VN is a node set and EN is a branch set. A
node corresponds to a subsystem and an edge means that
there exists a set of measurement and feedback control
which “locally” acts on the connected two subsystems in
the quantum sense. On the network topology, we assume
the following:

Assumption 1. (Kamon & Ohki (2013, 2014)) The graph
GN is connected.

It is known that when GN is connected, there always exists
a node vi ∈ VN s.t. a subgraph GN−1 of GN obtained by
removing vi and the connected edges to vi from GN is
still connected. Repeat this operation and we can get a
sequence of subgraphs GN ,GN−1, . . . ,G2.

Next, we introduce a quasi-local measurement operator
σi,j on the two subsystems composed of i-th subsystem
and j-th subsystem (we use “quasi-local” for representing
“quantum local operation” to distinguish from classical
cases). In the finite dimensional quantum systems, a mea-
surement operator, i.e., an observable is represented by a
Hermitian matrix, and the measurement projects quantum
states onto an eigenspace corresponding to the measured
value, which is equal to the eigenvalue of the Hermitian
matrix. Then, Kamon & Ohki (2013, 2014) defined σi,j as
below.

Definition 5. (Kamon & Ohki (2013, 2014))

σi,j := pPi,j + qQi,j (p �= q ∈ R), (4)

where

Pi,j =
1

2
(I + Si,j), Qi,j =

1

2
(I − Si,j), (5)

and Si,j is a swapping operator of subsystems i and j.

Remark 2. Equation (4) is a spectral decomposition of σi,j

with projection matrices Pi,j and Qi,j and the correspond-
ing eigenvalues p and q.

Remark 3. These measurements are quasi-local in a quan-
tum sense and realizable in appropriate instruments.

Let us perform a measurement σi,j on ρ, then we get a
measured value p with a probability of tr(ρPi,j) and the
quantum state changes to ρp, or we get a measured value
q with a probability of tr(ρQi,j) and the quantum state
changes to ρq, where

ρp :=
Pi,jρPi,j

tr(ρPi,j)
, ρq :=

Qi,jρQi,j

tr(ρQi,j)
. (6)

If ρ is a pure state, ρp and ρq are also pure states. Then, in
that case, we represent ρ = ψψ†, and ρp = ψpψ

†
p and ρq =

ψqψ
†
q where ψp = Pi,jψ/�Pi,jψ� and ψq = Qi,jψ/�Qi,jψ�.

Note that ρp is symmetric about i and j, i.e., invariant
under a permutation of subsystems i and j, while ρq is
anti-symmetric about i and j. Since ρq is an undesirable
state to attain SSC, we perform a feedback control with
a unitary matrix Ui,j on the subsystems i and j when
the measured value is q to drive the quantum states from
the eigenspace of Qi,j onto that of Pi,j . In this paper, we
consider applying the following Ui,j as a unitary operation.

Definition 6. LetD = 2. A unitary matrix Ui,j = I2⊗· · ·⊗
I2 ⊗ U ⊗ I2 ⊗ · · · ⊗ I2 ∈ B(DN) as a quasi-local operation
acts on the subsystems i and j as U = diag(1, 1,−1, 1) and
on the other subsystems as identity operator.

Since U is expressed by σz⊗I2, where σz is a Pauli matrix
σz = diag(1,−1), Ui,j is a phase reverse operation about z-
axis in the case of spin systems. A quantum state ρ changes

to Ui,jρU
†
i,j by the unitary operation Ui,j . If ρ is a pure

state and ρ = ψψ†, ψ changes to Ui,jψ.

2.4 Consensus Algorithm with Distributed Feedback
Control

We introduce a new quantum consensus algorithm (QCA)
with feedback in order to globally achieve SSC with high
purity w.p.1. This is based on the algorithm proposed by
Kamon & Ohki (2013, 2014).

(QCA)

(1) Randomly select an edge (i, j) from the branch set
EN .

(2) Measure the quantum state by σi,j .
(3) Perform a unitary operation Ui,j if the measured

value is q, or do nothing otherwise. Then, back to
(1).

There are two modifications from the original algorithm
proposed by Kamon & Ohki (2013, 2014). One is that we
select an edge (i, j) randomly, not by rotation. The other
is that we specify the unitary operation Ui,j in Definition 6
with which we succeed in guaranteeing the convergence to
SSC, while Kamon & Ohki (2013, 2014) cannot find such
unitary operation.

Remark 4. Note that the measurements of the projections
do not decrease the purity and the unitary operation Ui,j

keeps it unchanged. Therefore, it is obvious that the purity
does not decrease in QCA.

In this paper, we further show that QCA can be applied
to generate a W-state, which is one of the important
entangled states. A W-state is represented as ρW =
ψWψW† ∈ D(2N ), where

ψW =
1√
N

(|100 · · ·0�+ |010 · · ·0�+ · · ·+ |00 · · · 01�).
(7)

It is obvious that ρW is in SSC. If one of the N -qubits
is lost, the remaining (N − 1)-qubits keep a W-state in a
sense that ρWN = |0��0|⊗ρWN−1+ |1��1|⊗ |00 · · ·0��00 · · · 0|,
where ρWN (ρWN−1, ρ

W
N−2, ...) represents N -qubits ((N − 1)-

qubits, (N − 2)-qubits, ...) W-state. This is one of the
interesting properties of the W-state and its robustness is
highly appreciated in the field of quantum memory.

3. MAIN RESULT

Our main results are the following Theorem 5 and Corol-
lary 6.

Theorem 5. Let D = 2, then QCA drives quantum states
into SSC w.p.1 from arbitrary initial states.
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Corollary 6. Let the initial state be ρWI = ψW
I ψW†

I , where

ψW
I = |100 · · · 0�, then the quantum state converges to a

W-state w.p.1 with QCA.

Remark 7. A significance of Theorem 5 is that there is
no assumption about the structure of GN except for
Assumption 1, i.e., connectedness.

Remark 8. From Theorem 5, it is known that the conver-
gent state by QCA in SSC depends on the initial state,
and from Corollary 6, it converges to a W-state if its
initial state is ρWI . Note that ρWI is relatively easy to
prepare in spin systems rather than to prepare entangled
states directly. This implies the efficiency of QCA in actual
applications. Note that Corollary 6 is a direct result from
Theorem 5, however it represents the significance from the
application viewpoint.

Remark 9. The entanglement between N -qubits is
strengthened by the repetition of quasi-local measure-
ments and quasi-local feedback controls.

3.1 Proof of Theorem 5

To simplify the following discussion, we define a permuta-
tion matrix T ∈ B(DN) in the following. At first, classify
the bases of HN into the equivalence classes so that for all
the pairs of two bases in a equivalence class, there exists a
permutation of the subsystems s.t. one of the pair changes
to the other by the permutation. For example, whenD = 2
and N = 3, the 23 bases are classified into four equivalence
classes, {|000�}, {|001�, |010�, |100�}, {|011�, |101�, |110�},
{|111�}. Let F1, F2, . . . , Fkmax denote the equivalence
classes, where kmax denotes the number of the equivalence
classes and lk denotes the number of the elements of Fk,

which satisfies 1 ≤ lk,
�kmax

k=1 lk = DN . Then, construct
T as follows. First, arrange the elements of F1 from the
first column to the l1-th column in T . Next, arrange the
elements of F2 from the l1 + 1-th column to the l2-th
column in T . Repeating this procedure for all Fk, we get
a permutation matrix T . By the permutation of T , for
example, the permutation matrix Si,j , which represents
the permutation between the i-th subsystem and the j-th
subsystem, is represented as the following block-diagonal
matrix;

T�Si,jT =

⎛
⎜⎜⎜⎜⎜⎝

Si,j(1)
. . . O

Si,j(k)

O . . .
Si,j(kmax)

⎞
⎟⎟⎟⎟⎟⎠

, (8)

where O is a zero matrix and the size is represented
in the subscript if necessary in the following, and ∀k ∈
{1, 2, . . . , kmax}, Si,j(k) ∈ B(lk). We abbreviate (8) to

blkdiag(Sij(1), . . . , Sij(kmax)) or blkdiagkmax

k=1 (Sij(k)). We
also use the same representation in the following discussion
to describe block-diagonal matrices.

As mentioned in Section 1, the feedback control dynamics
depends on the state-depending complicated combinations
of two types of stochastic processes and it is represented as
a stochastic non-linear equation. An idea of applying the
Kraus map for linear autonomous systems is not applicable
in this case and its analysis requires strict dealing with the
dynamics and the combinations as follows.

In order to prove Theorem 5, first we constitute a bounded
non-negative function V (·) which satisfies the assumption
of Proposition 1, i.e., V (·) is a Lyapunov function, and then
show that quantum states converge to SSC in probability
with QCA. Finally, we show that they also converge to
SSC w.p.1.

(1) Construction of a Lyapunov function

If ρ ∈ SSC, ρ is invariant under any permutation of
subsystems, and also invariant under any projection Pi,j .
As Pi,j is a projection matrix, ρ ∈ SSC belongs to
the common eigenspace of all Pi,j whose corresponding
eigenvalues are 1. Therefore, we can construct a projection
matrix onto SSC as below.

Lemma 10. Consider⎛
⎝ �

(i,j)∈EN

Pi,j

⎞
⎠

n

, (9)

and (9) converges to the following P̃N as n → ∞ regardless
of the order of products;

P̃N := T (blkdiagkmax

k=1 (P̃N (k)))T�,

P̃N (k) :=
1

lk
ones(lk, lk), (10)

where ones(n, n) is a matrix in B(n) whose elements are
all 1.

We show some useful properties of P̃N hereafter. At first,
we can also define P̃m as P̃m := lim

n→∞(
�

(i,j)∈Em
Pi,j)

n for

m ∈ {2, 3, . . . , N} and get the following:

Lemma 11. Letm ∈ {2, 3, . . . , N}, then the following hold
for all (i, j) ∈ Em;

P̃mPi,j = Pi,j P̃m = P̃m, P̃mQi,j = Qi,jP̃m = O,

P̃ 2
m = P̃m, (11)

tr(ρPi,j) = 0 ⇒ tr(ρP̃m) = 0. (12)

Lemma 11 implies that P̃m is a projection matrix. Further-
more, we can show that P̃N is also a projection matrix on
SSC as follows:

Lemma 12.

tr(ρP̃N ) = 1 ⇒ ρ ∈ SSC (13)

We now define a bounded non-negative function, that is,
a Lyapunov function V (·) as

V (ρ) = 1− tr(ρP̃N ). (14)

It is known that V (ρ) satisfies 0 ≤ V (ρ) ≤ 1 due to

0 ≤ tr(ρP̃N ) ≤ 1 and V (ρ) = 0 ⇒ ρ ∈ SSC because of
Lemma 12.

Then, we show that V (ρ) satisfies the condition (1) in
Proposition 1. Let {ρn}n∈{0}∪N be a sequence of quantum
states, where ρ0 is the initial state and ρn is generated by
iterating QCA n times. Define the conditional expectation
of the increment of V (ρn) as

ΔV (ρn) := E{V (ρn+1)| ρn} − V (ρn), (15)

and we get the following:
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Lemma 13. The following holds:

ΔV (ρn) ≤ 0, ∀i, j (16)

Moreover,

ΔV (ρn) = 0, ∀i, j ⇔ tr(Ui,jQi,jρnQi,jU
†
i,jP̃N ) = 0, ∀i, j.

(17)

(2) Convergence to SSC in probability

Let M̃ be the largest invariant set that satisfies ΔV (ρ) =
0, and let us classify D(DN ) into the following three sets;

M1 = { ρ ∈ D(DN ) | tr(ρP̃N ) = 1 },
M2 = { ρ ∈ D(DN ) | 0 < tr(ρP̃N ) < 1 },
M3 = { ρ ∈ D(DN ) | tr(ρP̃N ) = 0 }. (18)

Note that M1, M2 and M3 are mutually exclusive and
M1 ∪ M2 ∪ M3 = D(DN ). It is known that Lemma 12

implies M1 ⊂ M̃. Therefore if M̃ ⊂ M1 also holds, then
M̃ = M1 and ρn converges to SSC in probability by
Proposition 1. In order to show that, it is enough to check
M̃ ∩ (M2 ∪M3) = ∅ and we show this in the following.

First, we can show the following:

Lemma 14. The following holds:

M̃ ∩M2 = ∅ (19)

Next, we prove M̃∩M3 = ∅. At first, define a state vector
version of M3 as

M�
3 = { ψ ∈ D�(DN ) | �P̃Nψ� = 0 }, (20)

whereD�(DN ) denotes the set of state vectors of dimension

DN and also define a state vector version of M̃ as M̃�, then
the following Lemma 15 holds, which implies that we can
assume that the quantum state is a pure state for the proof
of M̃ ∩M3 = ∅.
Lemma 15.

M̃ ∩M3 = ∅ ⇔ M̃� ∩M�
3 = ∅ (21)

Lemma 15 assures that all we have to prove is that there
exists a path of a non-zero measure which leaves M�

3
through a finite iteration of QCA when its initial state
is in M�

3, and we give its proof in Lemma 17. For it, we
prepare some notations and a lemma. The node VN \VN−1

is relabeled ‘N ’ and one of the adjacent nodes of it is
relabeled as ‘N−1’. Then, we can define UN−1,N , QN−1,N ,

and also P̃N−1 for GN−1 = (VN−1, EN−1) as similar to (10).
Then, we can get the following:

Lemma 16. Let D = 2 and let ψ ∈ D�(DN ), then

P̃N−1ψ = ψ & P̃Nψ = 0 ⇒ P̃NUN−1,NQN−1,Nψ �= 0.

(22)

Lemma 16 leads to the following Lemma 17.

Lemma 17. Let D = 2, and let {ψn}n∈{0}∪N be a sequence
of pure states generated by QCA from the initial state
ψ0 ∈ D�(DN ). Then, if P̃N−1ψ0 �= 0 and P̃Nψ0 = 0,
there exists a path of a non-zero measure which leaves
M�

3 through a finite iteration of QCA.

Lemmas 16 and 17 hold when N is replaced with N−1 by
the same discussions. Moreover, P̃2ψ0 �= 0 is always real-
ized by the feedback control. Therefore, by mathematical

induction, a pure state belonging to M�
3 leaves M�

3 in a

finite iteration of QCA, which implies M̃�∩M�
3 = ∅. Then,

M̃ ∩M3 = ∅ is shown by Lemma 15.

From the above discussion, M̃ = M1 holds and apply-
ing Proposition 1, it is shown that the quantum states
converge to SSC in probability with QCA from arbitrary
initial states.

(3) Convergence to SSC w.p.1

We employ the way used in Mirrahimi & van Handel (2007)
for the proof. Since ρ converges to SSC in probability,

lim
n→∞P{V (ρn) > �} = 0, ∀� > 0. (23)

As 0 ≤ V (ρn) ≤ 1, we have

E{V (ρn)} ≤ P{V (ρn) > �}+ �(1− P{V (ρn) > �}). (24)

Thus, lim sup
n→∞

E{V (ρn)} ≤ �, ∀� > 0 holds by applying

(23), which implies lim
n→∞E{V (ρn)} = 0. Proposition 1

assures ΔV (ρn) → 0 for almost all the paths. As V (ρn) is
bounded and Lemma 14 holds, V (ρn) converges for almost
all the paths. Therefore, we get E{ lim

n→∞V (ρn)} = 0 by

the dominated convergence theorem (Lipster et al. (2001)),
which implies that ρn converges to SSC w.p.1 as n → ∞.

3.2 Outline of the proof of Corollary 6

Let Dk(2
N ) be the set of quantum pure states where the

corresponding state vectors are in the linear space of Fk.
Note that ψW

I = |100 · · ·0� ∈ F2. Then, we can show
that the measurements and the unitary operations of QCA
act on each Dk(2

N ), k = 1, 2, . . . , N , independently.
Thus, if ρ0 ∈ Dk(2

N ), ρn ∈ Dk(2
N) for any n ∈ N. As

SSC ∩ D2(2
N ) = {ρW }, we get Corollary 6 by applying

Theorem 5 to the case ρ0 = ρWI .

Fig. 1: An example of network structures of the quan-
tum system. Each edge means that there exists a set of
measurement and unitary operation between the con-
nected two subsystems.

Fig. 2: Another example of network structures of the
quantum system.

4. NUMERICAL EXAMPLE

In this section, we show some numerical examples.

Fig. 3 shows the transitions of V (ρn) by QCA with three
random initial states, where the graph structure is given
by Fig 1. Note that the outputs of the measurement of
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the system in QCA are probabilistic and we simulate it
rigorously, then some of the plots show fluctuating transi-
tions. In the green line, V (ρn) monotonically decreases as
n increases, while it is not the case with the red line and
the blue line. Nevertheless, the quantum states converge
to SSC in any case and we can confirm the efficiency of
QCA.

Fig. 4 indicates the average of 1000 transitions of �ρn −
ρW � with the initial state ρWI . Note that the blue line and
the red line are the cases of Fig. 1 and Fig. 2, respectively.
Fig. 4 supports the assertion of Corollary 6 and moreover
suggests that the convergence rate gets higher as the
number of edges increases, though the relation between
the convergence rate and the graph structure needs further
investigation.

0 50 100 150 200 250 300
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0.6

0.8

1

n: the number of iterations of QCA

V
(ρ

n
)

Fig. 3: Transitions of V (ρn) by QCA with three random
initial states. The graph structure is given by Fig 1.
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�ρ
n
−
ρ
W
�

Fig. 4: Average of 1000 transitions of �ρn − ρW � with
the initial state ρWI . The blue line and the red line are
the cases of Fig. 1 and Fig. 2, respectively.

5. CONCLUSION

In this paper, we have shown that the quantum consensus
algorithm (QCA) globally achieves SSC w.p.1 keeping
purity by employing the stochastic version of the Lyapunov
stability theory and it can be applied to generate a W-
state, which is one of the important quantum states for
quantum information technology.

There are some remaining issues. One is to research
the relation between the graph structure of GN and the
convergence rate to SSC. As is well known, quantum states
are very sensitive to noises and quantum entanglement
collapses as time advances. Thus, it is desirable that the

convergence rate is high. Second is to check if Theorem 5
is true when the choice of edges are done in a deterministic
rotation as proposed in Kamon & Ohki (2013, 2014). Third
is to give a proof in the case of D ≥ 3 and enlarge the class
of Ui,j , which increases the realizability of QCA. Final
issue is the actual instrument for QCA.

ACKNOWLEDGEMENTS

This work is supported in part by Grant-in-Aid for Sci-
entific Research (B) (25289127, 16H04382), Japan Society
for the Promotion of Science.

REFERENCES

Belavkin, V. P.(1992). Quantum Stochastic Calculus and
Quantum Nonlinear Filtering. Journal of Multivariate
Analysis. vol. 42, 2, pp 171-202.

Horn, R. A., and Johnson, C. R. (1990). Matrix Analysis.
Cambridge University Press.

Kamon, S., and Ohki, K.(2013). Consensus of Quantum
States with Projective Measurement and Local Feed-
back. Japan Joint Automatic Control Conference. vol.
56, 916. November 2013.

Kamon, S., and Ohki, K.(2014). Bosonization and
Fermionization by Using a Consensus Algorithm.
MSCS2014. vol. 1, 5C3-3. March 2014.

Kushner, H.(1971). Introduction to Stochastic Control, pp
188-228. Holt, Rinehart and Winston.

Lipster, R. S., and Shiryaev, A. N. (2001). Statistics of
Random Processes I. Springer.

Mazzarella, L., Sarlette, A., and Ticozzi, F.(2013). Con-
sensus for Quantum Networks: From Symmetry to Gos-
sip Iterations. arXiv : 1303.4077v1, quant-ph.

Mazzarella, L., Sarlette, A., and Ticozzi, F.(2015). Con-
sensus for Quantum Networks: Symmetry from Gossip
Interactions. IEEE Transactions on Automatic Control.
vol. 60, 1, pp 158-172.

Mirrahimi, M., and van Handel, R.(2007). Stabilizing
Feedback Controls for Quantum Systems. SIAM J.
Control Optimization. vol. 46, 2, pp 445-467.

Sepulchre, R., Sarlette, A., Rouchon, P.(2010). Consensus
in non-commutative spaces. Proc. 49th IEEE Conf.
Decision Control. pp 596-601.

Shi, G., Li, B., Johansson, M., Johansson, K. H.(2015).
Finite-Time Convergent Gossiping. arXiv : 1206.0992v6.

Shi, G., Dong, D., Petersen, I. R., Johansson, K. H.(2016).
Reaching a Quantum Consensus: Master Equations
That Generate Symmetrization and Synchronization.
IEEE Transactions on Automatic Control : vol. 61, 2.
pp 374-387.

Takeuchi, R.(2015). The Generation of Large-scale Quan-
tum States on Spin Systems via Feedback Control. Mas-
ter thesis. The University of Tokyo. March 2015.

Takeuchi, R., and Tsumura, K.(2015). Consensus Gen-
eration of Quantum Networks via Feedback Control.
MSCS2015. 732-3. March 2015.

Ticozzi, F.(2016). Symmetrizing Quantum Dynamics:
Beyond Gossip-type Algorithm. arXiv : 1509.01621v2,
quant-ph.

Wiseman, H. M., and Milburn, G. J.(2009). Quantum
Measurement and Control Cambridge University Press.

Yokoyama, S. et al (2013). Ultra-Large-Scale Continuous-
Variable Cluster States Multiplexed in the Time Do-
main. Nature Photonics. vol. 7, pp 982-986.

2016 IFAC NECSYS
September 8-9, 2016. Tokyo, Japan

314


