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Distributed Feedback Control of Quantum Networks
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The Aim of This Research

Systems: Networked quantum systems (e.g. connected spin sys-
tems) with local observation and local control.

Problem: Show an algorithm to attain

e symmetric state consensus (SSC) from arbitrary initial states with
probability one and also to keep the purity,

e an important entangled state (¢ SSC), W-state.

Difficulty: A feedforward type quantum operation case [Mazzarella
et al. (2013)] loses the purity [Kamon and Ohki (2013)].

Objective: Propose a distributed feedback control with local observa-
tion and local control and give the strict proof for the convergence to
SSC or W-state with probability one.

Networked Quantum Systems

e [: the dimension of each subsys-
tem

e N: the number of subsystems

=- the dimension of the whole quan-
tum system is DY

e B(n) ={M e C™"}

e D(DY) = {M € B(DM)|M = M'" =
0,tr(M) =1}

e p € ®(DY): quantum state

e Gy = (Vv, En): undirected graph

e Vy: set of nodes,

e £y set of undirected edges

Fig. 1: An example of net-
worked quantum systems with
paired observations o;; and
controls U, ; (the circles repre-
sent quantum subsystems)

e (1, 7) € Eyn: an undirected edge between node i € Vy and node
7€ VN

o Ni:={j€Vn:(ij)or(j, i) € En}

e Assumption: G is connected.

Symmetric State Consensus (SSC) [Mazzarella et al. (2013)]:

e 7. a permutation of integers 1,2, ..., N
e U, € B(D"): a permutation matrix
Ur(1 @22 @ - QTN) = Tr(1) @ Tr(2) @ * -+ @ T(w)

o: symmetric state consensus (SSC) if U,pU! = p holds for any =

W-state:
PV =Wyt € ©(2V) where
YW = (100 - 0) 4010 -+ 0) + -+ +]00- - - 01))

p" is an entangled state and also an element of SSC

Purity:

e purity = tr(p?)

o ) <tr(p?) <1

o tr(p?) = 1 & pis a pure state

Lyapunov Function:

o V(p) =1—tr(pPy)

e Py: projection on SSC
e )< Vi(p) <1

e V(p)=0& peSSC

Remark: We employ a stochastic Lyapunov theorem.

¥ THE UNIVERSITY OF IOKYO

Consensus Algorithm with Distributed Feedback

-
Quantum Consensus Algorithm (QCA)

1. Randomly select an edge (¢, 7) from the edge set &y.

2. Measure the quantum state by o; ;, where

0ii=pP;i+qQi; (p#qeR),
1 1
P 325([ +Sii), Qi = 5([ —5ij),

and .S; ; is a swapping operator of subsystems i and ;.

3. Perform a unitary operation U, ; only to < and j such as Uw%(ml} —
110)) = %|01> +|10) (e.g. U;, = diag(1,—1) ® L) if the measured

Vipn)

V: Value of Lyapunov Function

value is ¢, or do nothing otherwise. Then, back to 1.
N Y

Remark: The measurements of the projections do not decrease the
purity and the unitary operation U; ; keeps it unchanged. Therefore,
the purity does not decrease in QCA.

Main Results

e N
Theorem: Let D = 2, then QCA drives quantum states into SSC

w.p.1 from arbitrary initial states. )
-

4 ™
Corollary: Let the initial state be p)" = /"¢, where ¢!V =

1100 - - - 0), then the quantum state converges to a W-state w.p.1 with
\QCA.
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Numerical Simulations

Vipn)

V: Value of Lyapunov Function

number of iterations

n. the number of iterations of QCA

number of iterations

n. the number of iterations of QCA

Fig. 2. Sample paths of Lyapunov Fig. 3: Sample paths of Lyapunov
function V' (p,,) of a system in Fig. 1 function V' (p,,) of a system in Fig. 1
from five random initial states p,. from "

Fig. 4. Case of a cascade con-
nection network structure.
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n. the number of iterations of QCA

Fig. 6: Average of 1000 transitions
of |p, — p"|| with the initial state
p,". The blue line and the red line
are the cases of Fig. 4 and Fig. 5,

| respectively.
Fig. 5: Case of a strongly con-

nected network structure.
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